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Gerieral News 

HJTt'RE l\:IEETINGS AND \VORKSHOPS A Sltnunary t.ahle is givenlwluw, l'ur
t.her details lli<I.Y be fonnd inside. 

TOPIC ~~~~~~~~ DXI'I':S -~--~-j-U)(';\'i'[(JN ~~~ 1 

STXl'IST'IL\LMl':CIL\'ilCS OF iR~lll JlTLY-i!in •-F~TIST --
INDUSTRIALLY I01PORTAc-IT ! 
MATERIALS AND PROCESSES 

STAT!C AND DYNA!\UC 
STFDIES OF FINITE 
S YSTE~·IS 

POLYMER MODELLING 

lT JFLY 1002 

1-·! SEPT HHJ2 

UNIVERSITY 
OF SFSSEX 

UNIVERSITY 
OF READ!NG 

CCPG PROGRAiVI LIBRARY Details are contained m this issue of accessing the 
CCP5 program libwry through E-mail autonw.t-ically. Also a number of new pro· 
grams have be<;m added to the library. 

C:RA Y Til\-·[E CCP5 participants are reminded thrd. CCP5 has an annui\.1 allocat-ion ot' 
C:ra-y time at Rutherford (Cray Xl\'IP-48), which is a-vailable for the development. 
of sinwlation prognuns which are of general use to the CCP5 conununity. Readers 
who wish to use some of this allocation should write to the CCP5 Secretary. Dr. 
(VL Leslie, TCS Division. SERC Dares bury Laboratory, Daresbmy. \Narrington \-·V.'U 
-lAD, 

CCP5 FUNDS FOR COLLABORATIONS CCP5 can tn<tke available funds of up 
t.o 1'.300 per annum for groups of hvo or more UK researchers wi.~hing to undertil.ke 
a collaborative project within the scientific area covered by CCP5. The funds Me 

intended to cover travel and subsistence costs. Researchers who wish to apply for 
funds are reqnested to Sl>bm.it a brief proposal (about L/2 a page) describing the in
tended work to Dr. M. Leslie, SERC Daresbury Laboratory, Daresbury, Warrington, 
Cheshire. Alternatively reply by Email to M.LESLIE@UK.AC DARES BURY 

CCP5 VISITORS PROGRAM CCP5 organises a visitors program which funds the 
visit to the UK of overseas collaborators_ We would normally expect a visitor to 
visit three sites in the UK and glVe a lecture at each site. These lectures would he 
open to all members of CCP5 as well as members of the host university. The visit 
would normally last between one or two weeks. CCP5 would pay for the cost of 
tnwel to the UK and within the UK between universities. CCP5 would expect some 
contribution towards accormnodation expenses at the host university to be met by 
the university. We will also consider longer collaborations or visits just one place if 
this can be justified by the nature of the work to be done. If you have an overseas 
collaborator who you would like to invite under tlus program, please make a request 
to Dr. M. Leslle, SERC Daresbury Laboratory, Daresbury, Warrington, Cheshire. 
UK Alternatively reply by Email to ~'I.LESLIE©UK.AC DARES BURY 
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Contributur~ to the current issue:. 
Our thanks go t.o: 

W. Alda 
;\[ Dubak 
J. Kitowski 
.J. ~Jo~ci!tski 

.J. Belak 

Institute of Colllpttt~'r Science AGH, 
30"05!) Krak6w, 
Poland. 

Condensed i'vhl:ter Physics Division 
:vi!tssivel.Y Parallel Computing Initiative 
Lawrence Li~·ernwre National Labor<tlory 
Livermore, Californiit 94550 "USA 

Z. A. Rycerz Department of Chem.ist.ry 
The University of V\'estern Ontario 
London, Ontario, 
Canada NO.-\ 587 

G. L'YJal0nkov Institute of Phy.5ical Chemistry 
Acad0my of Sciences of the USSR 
Leninsky Prospect, :H 
Moscow tl/915, FSSR 

Department of Chenustry and Centre for 
study in Cene Structure <\nd Function 
Hunter college and the Graduate Centre 
of the CUNY 
New York, NYl002l, USA. 
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Statistical Mechanics 

& Thermodynamics Group 

Faraday Division····.·. 

ROYAL 
SOCIETY OF 
CHEMISTRY·· 

Statistical Mechanics 
of Industrially Important Materials and Processes 

8-10 July 1992 
The Manchester Conference Centre 

First announcement and call for contributions 

The aim of this meeting is to focus attention on selected areas in which the techniques of statistical 
mechanics are being applied to study materials and processes of direct industrial relevance. These 
areas are polymer blends, cohesion and adsorption, and the rheology of powders and colloids. 

Speakers invited include K.Binder (Mainz), Sir S.F.Edwards (Cambridge), R.Koningsveld 
(Geleen), A.Lips (Unilever), L.Leibler (Paris), and LWoodcock (Bradford). In addition there 
will be some short contributed talks and also a poster session. Facilities will be available for the 
posters to be displayed for the .wtole 4lffiltion of the meeting. 

The meeting, which is heing jointly sponsored by the Macro Group UK and the SERC CCPS, 
is being held over one and a half days at the new purpose-built Conference Centre at UMIST. The 
location is close to the city centre and is well served by air, rail and road links. -

Organising Committee: Dr. J.H.R.Clarke (Chairman), Dr. R.F.T.Stepto, Dr. M.Cates, Dr. M Rodger 

Please return this reply slip as soon as possible (and !tot later than 28th February 1992) to 
Dr. R.F.T. Stepto 
Polymer Science and Technology Group 
Manchester Materials Science Centre 
University of Manchester and UMIST 
MANCHESTER Ml 7HS Tel. 061 200 3574 fax 061 200 3586 

Please send further information and application forms concerning the conference on the 
Statistical Mechanics of Industrially Important Materials ami Processes. 

Name 

Address ......................................................................................... 

Tel./ fax I email 

I would like to present a paper/poster: 
and the tentative title is 

yes/no 

signed ........................................... 
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Static and Dynamic Studies of Finite Systems 

A joint meeting between the Collaborative Computational Project Groups CCP5 and 
CCP6 is to be held at Sussex University on Friday 17th July Hl92. It is anticipated that 
the meeting will take the form of a workshop, with the following speakers being invited to 
stimulate discussion through reviews of current techniques for studying clusters. 

• Prof. R. J. LeRoy (Waterloo):- Computer simulation of the structural and spectroscopic 
properties of atomic and molecular clusters, 

• Dr. A. J. Stace (Sussex):- Experimental studies of dynamic processes in atomic and 
molecular clusters. 

• Dr. P. A. Madden (Oxford):- Computational techniques for studying metal clusters. 

• Prof. H. Haberland (Freiberg):- Experimental studies of metal clusters. 

The meeting will start at 10.30am in the School of Chemistry and Molecular Sciences, 
Sussex University. There is no registration fee and refreshments and lunch will be provided 
for those participants invited to join the workshop. 

All those wishing to attend the workshop should register with Dr. A. J. Stace, School of 
Chemistry and Molecular Sciences, University of Sussex, Fahner, Brighton BNl 9QJ by the 
pt of July. 
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POLYMER MODELLING 

An International Con terence Organised By 

POLYGEN I MOLECULAR SIMULATIONS 

in association with 

The Collaborative Computational Project No.5 and Silicon Graphics 

to be held at 

Polymer Science Centre, UniverSity of Reading, U.K 

on 

2nd- 4th September 1992 

This conference is open to all scientists in academia and industry who are interested in modelling 
polymers. Scientific topics have been chosen which span the wide range oflength-scales and 
time-scales present in polymer systems, from picosecond studies of atomistic models, through 
courSe-grain Monte-Carlo methods, to quantitative structure property relationships. Applications 
for which new modelling methods are being developed~ such as free energy calculations and 
polymers at interfaces, and the structural analysis of amorphous and liquid crystalline polymers 
through a combination of modelling and diffraction experiments, will all be addressed. The 
invited speakers include: 

Prof W A Goddard Ill, California Institute ofT echnology 
Dr D N Theodorou, University of California Dr B Smit, Shell Research 
Prof A J Hopfinger, University oflllinois Dr K Kremer, KFA J\ilich 
Dr A H Wmdle. University of Cambridge Prof K Binder, Universitat Mainz 
Dr G R Mitchell, University of Reading Dr J H R Clarke, UMJST 

For further information please write to: 

Dr M R Stapleton 
Polygen I Molecular Simnlations 
Abbots House 
Abbey Street 
Reading 
Berkshire RG 1 3BD 
u. K. 
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The CCP!) Program Lilxary 

W. Smith 

October '2.1), 1991 

News 

We have received a number of programs in t.he last year. Part.icLLlady welcome are the 

prop;rams for parallel compnt<'rs. 

• lvWCSPC2P- by W. Smith. A molecular dynamics program for simulating ionic 
syst.ems with Born-IIuggins-i\hyer potentials. This is a par<~.llel FO!URAN 77 pro
gram de~igned primarily ['or the Intel iPSC m<tchines. It can however he adapted 
e<tsily to serial m<~.chines. It can simulate constant volume or constant pressure 
ensembles, the latter by either Parrinello-Rahman, or Brown-Clark const\\nt pres
sure algorithms. The parallel algonthm is the replicated data algorithm due to 

Smith. 

• SLS_PRO - by A. Rame. A molecular clynanUcs program for simulating protein 
residues in uacuo_ This is a parallel OCCAM progr::un designed specifically for 
transputer based machines. The program uses the SLS-GO systolic loop parallel 

algorithm of Raine, Fmcham and Smith. 

o SOTON_PAR- by .1vf.R.S. Pmches_ This is a directory of FORTRAN parallel 
programs for simulating Lennard-Janes atomic systems using the parallel link-cells 
algonthms. The programs were written primarily !Or the Intel iPSC m,•chines. 2-
and 3- dimensional programs are available, both comprised of a master prognun, 
which resides on the host and a worker program, which resides on the network of 
nodes. 

o SFMK - by A.P. Lyubartsev. A FORTRAN program for Monte-Carlo - Self
Consistent Field simulation of the cylindical polyelectrolyte. Wntten and tested 

on an IBM PC/AT-286. 

All of these programs are available through the CCP5 Program Library in the usual 

way.5 (see below.) 
Our thanks go to everyone who has contributed the above programs. 

CCP5 Program Library Conditions of Distribution 

The CCP5 Program Library provides programs and documentation free of charge ~o 

academic centres upon applic0-tion to Dr. W. Sm.ith, TCS Division, S.E.R.C. Dares bury 
Laboratory, Daresbury, Warrington WA4 4AD, U.K .. Please supply a magnetic tape to 
receive the copies. Industrial and commercial applicants should enclose a £100 handhng 
charge. No magnetic tape need be sent in this c;U:>e. Listings ofproguuns ttre available if 
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rcqLLirerL Plertse twte that 11se of inappropriate packing for 11\agnet.ic tap<CS (e.g. padded 
hags) lllay result in t.hem being retttrnP.d without t.he required ~olhvarc. F'lect.~e ensnn~ 

thnt tltese forms of pcccb.ging <tt·e not used. A list of programs available is present.ed in 
t.hc following pages. 

All npplicnnts will be required to sign an ngrN'tnent. not to exploit. t.he 
progrnms for conuuet·einl put·poses e.g. f(H' resnlf~ or dist.ribution ns p<ld. or 
whole of a commet-cial product. 

Readers should also not.e that we are authorised to 5Upply t.he example progrcuus 
originally published in t.he hook ''Computer Simulation of Liquids'', by r,-[.P. Allen and 
D .. L Tildesley (Clarendon Press, O.<forcl 1987). These are supplied in the same manner 
as the resident CCPS programs. We are grateful to lV[ike Allen and Dominic Tilclesley 
!Or their permission. 

'vVe should also like to remind our readers that we wottld welcome further contribu
tions to the Program Library. The Library exists t.o provide support for the research 
efforts of everyone i\cti~·e in computer simulntion and to this end we are ulways pleased 
to extend the range of software av<tibble. If any of our readers have any programs they 
would like to make av<tilable, please would t.hey contact Dr. Smith. 

Plense Not.e: for copyright re<lsow; we are not able t.o supply the prograrns 
CASCADE, SYMLAT, THBFIT,THBPHON and THBREL free of charge to 
UniVersities outside the United Kingdom. 

Program from the Book: "Computer Simulation of Liquidsll hy !VI.P. 
Allen and D. Tildesley, Clarendon Press, OxfoL·d 1987. 

These programs originally appeared on microfiche in the book "Computer Simulation 
of Liquids" by ,\I. P. Allen and D . .J. Tildesley, published by Oxford University Press, 
1987. They are made freely available to members of CCP5, in the hope that t.hey will be 
useful. The intention is to clarify points made in the text, rather than to provide a piece 
of code suitable for direct use in a research appliwtion. VVe ascribe no commercial value 
to the programs themselves. Although a few complete programs are provided, our aim 
has been to offer building blocks rather t.han black boxes. As far as we are aware, the 
programs work correctly, but we can accept no responsibility for the consequences of any 
Brrors, and would be grateful to hear from you if you find any. You should always check 
out a routine for your particular application. The programs contain some explanatory 
conunents, and are wrinen, in the main, in F'ORTRAN-77. One or two routines are 
written in BASIC, for use on microcomputers. In the absence of any universally agreed 
standard for BASIC, we have chosen a very rudimentary dialect. These programs have 
been run on an Acorn model 8 computer. Hopefully the translation of these programs 
into more sophisticated languages such as PASCAL or C 5hou.ld not be difficult. 

M.P.Ailen 

CCP5 Program Library E~Mail Service 

From January l 1991 it will be possible for CCP5 members to get copies of CCP5 pro
grams through E-mail a-utomatically. To do so they should send an E-mail message 
to info-server@uk.ac.daresbury. The contents of the e-mail message should be as 
follows (Note: the use of upper and lower case is significant- this is a unix system!): 
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rN(Uest sources 

t.opit index CCP/ccp5 
topic CC P / ccpG/ program-name 

VI/here progratrHHHHe is t.!w name of the desired sottrce code. A mail server will au

tomatically process this message ;end return a copy of the source code t.o yonr e-mail 
add res~. P\e<tse note ttle following however: 

The program sottrce will be retmned to you in uue fornw.t, which is a form of 
encoding most suitable !'or mail messages. ft can easily be decoded on any unix syst-em 
using the uudecode conunand. (Check your local unix man file for details). Also, to 
speed the transfer, the source will be spilt into files of 1200 records each, so expect two 
or thn<e :wch tlles for the aver(l.ge CCP5 program. Once again, uudecocle will help you 

to sort things ottt. 
Readers who do not have unix facilities should inclttde the following lines at the 5tart 

of the <tbove message: 

line-limiL nnnnn 
coding: off 

Where nnnnn is the number of records in the source (in most cas0.s 6000 should be 
enough). The progmm will be sent in plain FORTRAN as a single f-ile. It may t<tke a 
while to arrive, but be patient! Also beware in case your system mailer cannot handle 

messages of this size. 
Readers must renlise that the term.':i of use and distruhution of the CCP5 programs 

that have arplied hit.herto will be maintained. Users should not redistribute or sell the 
programs, nor ts any liability accepted for their use, either by SERC or the program 
authors. It ts a reqmrement on the user that the programs be fully tested for their 
intended purpose. Any bugs found should be reported to the libr<trian, for the benefit 

of other users. 
Lastly readers should realise that this means of transfer does not include any program 

documentation. So if you are unable to make sense of the programs, write for the 
documentation! 

We are grateful to Mr. P. Griffiths of Dareshtu-y's ITS Division for implementing 

this facility. 
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TilE C'C'Po P!toCatAi\l UBRAHY. 

i\DtUXT 

CARLOS 
CARLAN 

CASCADE 
CURD EN 
DENCDR 
HLJl 
HLJ2 

HLJ3 
HLJ4 

HLJS 
HL16 
Ht1DIAT 
HSTOCH 

t1CN 

t·1CLSU 
t·1Ct10LDYN 

i·1CRP!1 

HDAT0/1 

t·mATm1 
NDCSPC2P 
NDCSPC4B 
NDDIAT 

11DDIATQ 
NO IONS 

HDLIN 
1-lDLH!Q 
!-1D3DLJ c 

t-1Dl1ANY 
HD!1IXT 

1-!DNPOL 

~1DNACL 

l·1DPOLY 
!1DMULP 

~lDSGWP 

!1DTETRA 
l1DZOID 
NAHELIST 

NSCP3D 
PIMCLJ 
SCN 

[HD, LJ A/NIX, LF, TH+I~SD+RDF] ',.J. Smith 

[I-1C,VS+Aquo,TH] B. Jonsson&: S. Romano 

[DA,CARLOS structure analysis] B. Jonsson 
& S. Romano 

[LS,DIL,El1,TH+STR] i-1. Leslie & \-1. Smith 
[DA, Current Density Correlations] \·1. Smith 

[DA,Density Correlations] ~!. Smith 
[MD,LJA,LF,TH+l·lSD+RDF] D.H. Heyes 

[t•!D,LJA,LF,TH+11SD+RDF+VACF] D.l-1. Heyes 

(t1D,LJA,LF/LC,THH1SD+RDF'] D H. Heyes 

[r!D, LJA, LF/CP+CT, TH+~1SD+RDF] D.~!. Heyes 
(l·JD,LJA/SF,LF,THH!SD+RDF] D t•l. J!eyes 
[1-JD,LJA,TA,THH!SD+RDF] D.t·l. Heyes 

[tolD, LJD, G5+Q4, TH+1·1SD+QC] S. 1-1. Thompson 
0·10/SD, VS+BA, LF+CA, TH] 111. F. van Gunsteren 

& D /1. Heyes 
[PlC,LJA,TH] IL Corbin 
[PlC,LJA,Tf!] C.P. 1.·/ilhams & S. Gupta 
[1-lD/HC, LJS+FC+AQ, LF+QF/GS+QS, TH+RDF] A. Laaksonen 

[PlC, RPE, TH+RDF] D. M Heyes 
[!10, LJA ,GS, TH+RDF+PlSD+QC] S. /1 Thompson 
[/olD, LJA, LF, TH+MSD+RDF] D Fincham 

W. Smith [PR!-10, BHH, LF, TH+STF+RDF+ VACF+MSD] 
[PR!-10, BHPl+FC, G5+G4, TH+STF+RDF] H. Smith 

[P1D, LJD, LF+CA, THH!SD] D. Fincham 
[110, LJD+PQ ,LF+CA, THH1SD] D. Fincham 
[HD ,BH/-1, LF, TH+/1SD+RDF+STF] D. Fincham 

& N. Anastas loU 
[MD, LJL, GS+Q4, TH+HSD+QC] S.M. Thompson. 
[t1D, LJL+PQ ,GS+Q4, TH+HSD+QC] 

[ND, LJ A./NIX, LF /LC, TH+MSD+RDF] 

S.H. Thompson 

M. Bargiel, 
W. Dzr,rinel, J. Kito~ski and J. /1oscinski 

[NO,LJS+FC,LF+QF,Tl!] D. Fincham & 11/. Smith 
[PlD, LJS/!HX ,LF+QF, TH] 'r/. Smith 
[HD, LJS+FC/HIX, LF+QF, TH] \-/. Smith & D. Fincham 
[MD ,BH!1, LF, TH+l1SD+RDF] W. Smith 
[t1D,LJS,GS+Q4,THH!SD+QC] S.H. Thompson 

[MD, LJS+PD+PQ/MIX, LF+QF, TH] W. Smith 
[MD,LJA/SGHP,LF,TH+VACF+RDF+QC] 1tl. Smith 

& K. Singer 

[MD, LJT, GS+Q4, TH+HSD+QC] S. M Thompson 
[PlD,GAU,LF+QF,TH+HSD+RDF+VACF] W. Smith 
[UT, Namelist emulation] K, Refs on 
[UT, Hard sphere packing] 11. Bargiel & J. ~!oscinski 

[PIMC,LJA,HC,TH+RDF+QC] K. Singer & \1. Smith 
[MC,LJA,RFD,TH] N. Corbin 
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Sfl-JK 
SLS_PRO 
SOTON_PAR 
SURF 
SYP1LI\T 
TEQUILA 
THBFIT 
THBPHON 
THBREL 

Key: 

[t-lC-SCF ,Cylindrical Polyelec .] A .P. Lyubartsev 
[HD, Proteins, LF, TH+STR] A. Raine 
[PlD,LJi\,LC:,TH] t·1.R.S. Pinches 
[1-10, BHM/TF /20, LF, TH+RDF] D. !1. Heyes 

HanJell [LS, PIL, EN+SYM, TH+STR] 
[GP] A. tlilton and F 
[LS,PIL,EN,Potential 

Mueller-Plathe 
fitting] Har~ell 

[LS, PIL/3B ,EH, Phonon dispersion] Harwell 
[LS, PIL, E/ol, TH+STR] Harr,-ell 

Program types: NO /ololecular dynamics 
HC /olonte Carlo 

PRl-10 Parrinello-Rahman MD 
LS Lattice simulations 
SO Stochastic dynamics 
DA Data analysis 
UT Utility package 

PHlC Path Intagral Monte Carlo 
GP Graphics program 

System models: LJA Lannard-Jones atoms 
LJD Lennard-Jones diatom~c molecules 
LJL Lennard-Jones linear molecules 
LJT Lennard-Janes tetrahedral molecules 
LJS Lennard-Jones site molecules 
RPE Restricted primitive electrolyte 
BHM Born-Huggins-~1eyer ionics 

SmiP Spherical gaussian wavepackets 
TF Tosi-Fumi ionics 
VS Variable site-site model 
BA Bond angle model 
PD Point dipole model 
PQ Point quadrupole model 
~liX Mu:tures of molecules 
GAU Gaussian molecule model 
FC Fractional charge model 
PIL Perfect ionic lattice model 
DIL Defective ionic lattice model 
3B 3-body force model 
20 Two dimensional simulation 
SF Shifted force potential 
FC Fractlonal charge model 
AQ Aqueous solutions 

Algorit!un: G5 Gear 5th order predictor-corrector 
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Properties: 

Q4 Quat8rnion plus 4th. order Gear P-C. 
LF Leapfrog (Verlet) 
Q[' Fincham Quaternion algorithm 
QS Sonnenschein Quaternion algorithm 
LC Link-cells ND algorithm 
CP Constant pressure 
CT Constant temperature 
TA Tox•1aerd t·lD algorithm 
CA Constraint algorithm 
Ei'-1 Energy minimisation 
SYH Symmetry adapted algorithm 
RFD Rossky-Friedman-Doll algorithm 

TH 
HSD 
RDF 
STF 
VACF 
QC 
STR 

Thermodynamic properties. 
/·lean- square-displacement 
Radial distribution function 
Structure factor 
Velocity autocorrelation function 
Quantum corrections 
Lattice stresses 
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Prognuns from t.he Book "C'olllput.er Simulation of Liquids" 

F 1 Periodic boundary conditions in various geometries 

F 2 5-value Gear predictor-corrector algorithm 

F. 3 Low-s tor age ND programs using leapfrog Verlet algorithm 

F.4 Velocity version of Verlet algorithm 

F. 5 Quaternion parameter predictor-corrector algorithm 

Leapfrog algorithms for rotational motion F 6 
F. 7 
F .8 

F. 9 

F. 10 
F. 11 
F. 12 

F. 13 
F. 14 

F. 15 

F. 16 

F. 17 
F. 18 
F. 19 
F .20 
F 21 
F.22 

F 23 

F . 24 

F .25 

F .26 
F .27 
F.28 
F.29 
F .30 

F 31 

F.32 

F.33 

F.34 
F.35 

F.36 

F.37 

Constraint dynamics for a nonlinear triatomic molecule 

Shake algorithm for constraint dynamics of a chain molecule 
Rattle algorithm for constraint dynamics of a chain molecule 

Hard sphere molecular dynamics program 

Constant-NVT 1-lonte Carlo for Lennard-Janes atoms 

Constant-NPT ~lonte Carlo algorithm 

The heart of a constant $\mu$VT Honte Carlo program 

Algorithm to handle indices in constant $\mu$VT t1onte Carlo 

Routines to randomly rotate molecules 

Hard dumb-bell Monte Carlo program 

A simple Lennard-Janes force routine 
Algorithm for avoiding the square root operation 

The Verlet neighbour list 
Routines to construct and use cell linked-'list method 

Hultiple timestep molecular dynamics 

Routines to perform the Ewald sum 

Routine to set up alpha fcc lattice of linear molecules 

Initial velocity distribution 

Routine to calculate translational order parameter 

Routines to fold/unfold trajectories in periodic boundaries 

Program to compute time correlation functions 

Constant-NVT molecular dynamics extended system method 

Constant-NVT molecular dynamics constraint method 

Constant-NPH molecular dynamics extended system method 

Constant-NPT molecular dynamics constraint method 

Cell linked-lists in sheared boundaries 

Brownian dynamics for a Lennard-Janes fluid 

An efficient clustering routine 

The Voronoi construction in 2d and 3d 

Mon·te Carlo simulation of hard lines in 2d 

Routines to calculate Fourier transforms 
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Availability of the Allen/Tildesley example programs 

Steve Thompson, 
School of Chemical Engineering, 

Cornell University, 
Ithaca NY 14853 

October 8, 1991 

Appendix F of the book "Computer Simulation of Liquids'' by M.P.Allen and D.J. 
Tildesley describes a method whereby the example programs may be obtained from 
the statistical mechanics group FTP facility at Cornell. As a number of people have 
recently discovered, this facility is no longer operational as advertised, due to hardware 
and software changes. However, the programs axe still available. To obtain them, please 
follow the procedure outlined here. The description below is taken from the HELP file 
that is distributed by the file server; to obtain the Allen/Tildesley example programs, 
simply use ''ALLEN_TILDESLEY" as the package name (without the double quotes). 

Please note that the internet address for cheme.tn.cornell.edu has changed to 
128.84.243.48 (from 128.84.253.7 as previously listed). This address may change in the 
future as the local network is reconfigtued. IT you use a name server, you should be 
immune to these changes. 

Other packages will become available as time allows; notice will appear in this 
newsletter. 

STATMECH is a file distribution service for the Statistical Mechanics corrrrmmity 
that uses electronic mail facilities to deliver files. To communicate with STATMECH, 
send a.n E·mail message to: 

statmech@cheme .tn.cornell.edu 

Commands are sent in the body of the message you send to STATMECH (not in the 
subject line). Several conunands may be sent at one time; just put one command per 
line. 

STATMECH Commands: 

SEND ME package 
SEND ME packa.ge.n 

LIST [pattem] 

HELP 

Sends all parts of the specified package. 
Sends part 'n' of the specified package. 

Gives brief description of all packages 
matching "pattern", If pattern is omitted, 
a description of all packages is sent. 

Sends this help file. 
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For each request you make, a transaction log is returned to you indicating the status 
of the request, The status report will indicate whether the request was successfully 
completed, and when the file was or will be sent. Large files are sent only during off· 
peak hours. 

Problems, questions, and comments about STATMECH service on this system should 
be directed to "statmech-mgr@cheme.tn.cornell.edu". 
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Molecular dynamics simulation of plastic deformation of 2-D solid * 

(MD hydrodynamics at 1 K) 

Witold Aida, Marian Bubak, Jacek Kitowski and Jacek MoScirlski 
Institute of Computer Science, AGH 

a.l. Aiickiewicza. 30, 30-059 Cracow, Poland 

November 21, 1991 

Abstrnct 

The purpose of pre~cnted computer cxperiwents is the study of phenomena resembling plastic defor

mation of materials. The simulatiOn has been conceived as a qualitative observation of processes and as 

a test of possibility of obtaining effects analogous to macroscopic ones. The system has been composed 

of three clements: unmovable obstacle forming a slit, piston, and plastic material. Although number of 

moving particles in the model is very small impressive images of plastic deformation has been obtained. 

1 Introduction 

Recently molecular dynamics {i~fD) [1]-[2] is being used for simulation of macroscopic phenomena. e.g. fluid 

flows [3]-[5]. The purpose of presented computer experiments is ~he examination of phenomena rcscmblmg 

plastic deformation of materials. The stmulalion has been conceived as a qualitative observa~wns of processes 

and so a very simple system was applied: monoatomic molecules, 6/12 Lennard-Janes interactions and regular 

initial structure. The other goal was to test the possibility of obtaining effects analogous to macroscoptc ones 

but achteved on a very small sample. We were also looking for the microscopic parameters range in which 

these phenomena may be observed. YVc have already tried this, more or less succcsfully, with microscale 

hyclroc\ynamics (6]-[7}. 

2 Model 

In all simulations the system ha., been composed of three elements: 

• unmovable obstacle formmg a slit, 

e piston, 

• plastic medium. 

The obstacle is built up of cx:tremely heavy (10 10mAr. mAr ·-mass of Argon) particles and this makes 

them actually unmovable although they interact with the rest of the system and are considered in the 

Newtonian equations of motwn. 

The piston also consists of such heavy particles and could behave just like the obstacle, but externally 

applied velocity moves it continuosly al_ong the x-axis, and moving piston simply pushes the plastic medium. 

It should be stressed that piston movement is not affected by any means by the dynamics of the system. 

'Post<!~ presented at the Summer Schoo! of the NATO Advanced S~udy Instilut<J "l\lficcoscopic Simul&ion of Complex 

Hydrodynamic Phcnomeru>", Alghcro, Italy, July 15-26, 1991. 
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Consequently its velocity can not be too high to avoid unpredictable and unrealistic effects. Natural conse

quence of the low velocity of the piston is that simulatwn runs have to last about 105
-:-- 106 timesteps and 

this fact docs not depend on the size of the sample. 

PlaBtic medium is somehow artificial. We have started with the mass, density and potentials of liquid 

Argon, but after preliminary runs we were forced to enlarge f parameter in L-J potential about t1ve times 

to get stronger bindings between particles and to let them behave more like a solid. All particles in plastic 
medium are identical, and different colours in the figures (see below) ate introduced only to enable observation 

of separate layers movement. 

3 Software and hardware environment 

As a simulation program subsqucnt C~language and Fortran two-dimensional versions of our earher basic 

code for MD simulation of particles with Lennard-Janes potentials have been applied [9]. We have also 

used EDSIMP v3.0 [8] program for the system initial structure editing, results visualisation and preparation 

of figures Runs have been performed on PC/AT ,186 25MHz, and on plug-in board with i860, 40 MHz 

processor. 

4 Simulation runs and results 

Large number of runs have had to be performed to choose mstructive images. In all runs plastic medium 
remained the same, and the shape and width of the slit as well as the piston velocity have been varying. ln 

this paper we present three runs with the same initial conditions, the same geometry and differing only in 

the velocity of the piston. Number of moving particles in the presented system is small~ equal to 784. In all 
simulations the timestep was set to lO-l'ls. To make the system behave like a solid rather then like a liquid 

we have been obhged to "freeze" it by scaling temperature to lK every several timesteps of simulation. 
Presented runs have been performed for three piston velocities: 20 X 10-4, 1 X 10-4, l X 10~ 1A_jtimestep; 

the snapshots of particle distributions are presented in Figures 1, 2, 3, respectively. It can be seen that 

the "nose" of the extracted medium keeps its shape well. However, with the fast piston movement medium 

compresses significantly before the slit and then pours out like a liquid and presses the forehead (see the 

zig-zag deformation of the central blue layer in the Figure 1). For runs with slower piston movement such 

deformations do not occure. To complete these runs we needed 75000, 375000 and 700000 steps. 

Images in Figure 4 show particles momenta in a relatively small time interval for the run wilh piston 

velocity v = 1 X 10~ 4A.jtimestcp. Every arrow represents a mean momentum of several particles (~ 10). 
Two 1tems s.hould be mentioned: the first is strongly coupled collective behavior of particles (seen in top and 

bottom images), and the second is a. complex wave movement which leads to chaotic motion between mote 

ordered stages (middle image). 

5 Conclusions 

Using a very simple system and a very small sample we have obtained quite impressive images of extraction, 

flow and deformation of plastic material. The pictures are sim1lar to real life observations or to results 

obtained with direct numerical solutions of the Navier-Stokes equations. We treat it as a preliminary 

study of subsequent, maybe more realistic simulations, aimed at the establishing of relationships between 
microscopic parameters of the mediun and 1ts macroscopic behavior in the plastic deformation process. We 
intend to perform simulations for larger samples, vary the piston velocity in a wider range - especially for 

lower velocities, and study carefully the wave propagation throug the medium. 
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Fig. l. Change of the form of the plastic material in the pressing out process; 
piston velocity ·u:::: 20 X 1Q-4J\.jslep; 

upper figure- step 30000, middle- 37500, bottom- 50000. 
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F1g. 2. Change of the form of the plas~ic material in the pressing out process; 

plston velocity v ::: 4 X w-4 It/ step; 

upper figure~ step 125000, middle- 150000, bottom- 187500. 
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Fig. 3. Change of the form of the plastic material in the pressmg out process; 
piston velocity v:::: 1 X w-·1Ajstep; 
upper figure. step 500000, middle- 600000, bottom -750000. 
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Fig. 4. Velocities in the pressing out process; 

piston velocity v = 1 x lo- 111/slep: 
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upper figure- step 710000, middle- 720000, bottom -730000. 
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A Parallel Implementation of a Molecular Dynamics 
Algorithm using the PCP Programming Paradigm and 

its Application to Orthogonal Metal Cutting * 

James Belak 

Condensed Matter Physics Division 
and 

Massively Parallel Computing Initiative 
Lawrence Livermore National Laboratory 

Livermore, California 94550 

Abstract 

The molecular dynamics (MD) method has proved to 
be one of the most important tools in theoretical coo~ 
densed matter physics. The basic input is a descrip
tion of the interatomic interactions. The method has 
been traditionally used to extend our knowledge con
cerning these interatomic forces and to explore equilib
rium phase diagrams. More recent applications have 
focussed on providing details beyond the current res
olut,ion of experiment. Here, we apply the method 
to the single point diamond turning of simple metals. 
Because the simulation time-step must be a small frac
tion (typically 1/50) of the interatomic vibrational pe
riod (rE ~ 10- 12sec), the CPU time required to simu
late the chip formation process is enormous. For this 
reason, we are exploring the utility of massively par
allel computers, such as the BBN TC2000, to perform 
MD simulations. We dlVide the large MD simulation 
cell into many small sub-cells. Atoms in a given sub
cell interact only with atoms in neighboring sub-cells. 
We parallclize over these sub-cells. The performance 
of the code running on 64 processors on the TC2000 
is comparable with a vectorized version running on a 
single Cray X/MP processor. However, with 96 pro
cessors, we estimate our parallel efficiency to be about 
GO% (75% for the force routine). This performance, 
though seemingly good, is limited by inherently serial 
sections-in the code (primarily the application of com
plex boundary conditions). In order to fully exploit 
the 103 - 104 processors expected in the next genera-

"Work pcrlonned under lhu auspices of the U. S Department 
of Energy by the Lawrence Livcnnore NnHonnl Lnborntory un
der controct No. W-7405-ENG-48. 
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tion parallel supercomputer, we will need to eliminate 
these serial sections. Our code uses the interleaved 
shared memory to store atomic positions and forces. 
We estimate the shared-memory overhead to be about 
50%. In our future work, we plan to explore a larger 
domain decomposition scheme that assigns many sub
cells to a single, domain. Each processor is assigned a 
domain and t;he storage for that domain is private to 
the processor. This scheme wilt win when the amount 
of inter-domain communication is small. 

Keywords: Molecular Dynamics, Single Point 
Diamond Turning, Orthogonal Metal Cutting, BBN 
TC2000, Cray X/MP, shared memory, private mem
ory, parallel efficiency. 

1 Introduction 

State of the art single point diamond turning (SPDT) 
machines, such as the large optics diamond turning 
machine (LODTM) operated by the Precision Engi
neering Program (PEP) at LLNL, routinely achieve 
mirror quality finishes without additional polishing! 
In SPOT, a tool with a very sharp diamond tip (tip 
radius S 100nm) is used to scrape a small amount of 
material off a surface in a controlled manner. Typ
ical depths of cut are :'5 1 J.Jin and can be as small 
as a few nanometers. A cutting speed of....., l m/s is 
normally used, while speeds of several hundred meters 
per second arc used for special applications. At these 
depths of cut and cutting speeds, the entire chip for
mation process occurs on time scales less than 1 psec. 
The work material moves: 1 pm in 1 psec at a cutting 
speed of 1 m/s. Also, the total number of atom<> di-



rectly participating 1tl the deformation is at most 109 . 

These observations suggest that a molecular dynam
ics model, which explicitly takes into account atomic 
motion, may yield new and useful information about 
the cutting process. 

During metal GUtting, there is very liUle flow of ma
terial orthogonal to the cutting direction and most of 
the relevant physics iB wntained in a two dimensional 
model. For this reason, we have begun our molecular 
dynamics study of metal cutting by performing two di
mensional simulations containing at most 106 atoms. 
We consider tip radii ::::; 20 nm and cutting speeds of 
10-100 mfs. Even at these relatively fast speeds, mil
lions of time-steps are required to simulate the chip 
formation processes and a single calculation runs for 
several hundred CPU hours. Fully three dimensional 
calculations are beyond our present capabilities and 
await the next generation teraflops machine. We an
ticipate that this machine will contain"' 104 very fast 
processors ("" 100 megaflops) and we are designing our 
algorithms to be scalable to this processor count. 

2 Molecular Dynamics Model 
of Orthogonal Metal Cutting 

Molecular dynamics modeling is very simple in princi
ple. Given the positions of all of the atoms, calculate 
the forGe on each atom due to its neighbors and ad
vance the positions with a finite difference integration 
scheme. Both predictor-corrector and central differ
ence are commonly used. In our simulations, we em
ploy an embedded atom method (EAM) to express the 
forces between the atoms in a simple metal[l]. The to
tal potential energy is written as: 

with 
p; ~ 'L;t(,;J)· (2) 

ji.i 

The first term is the usual two body interaction energy 
and the second term IS the energy required to embed 
the a~oms into the local electronic charge density (p;). 
The Newtonian equations of motion for the embedded 
atom method are 

- L;<o'(r,;) + (F'(p,) + 
j# 

F'(PJ))f'(r;;i )) x;;- Xj. 
rki 

(3) 

These equations are inherently non local-they depend 
on both the embedding densities Pk and Pi They 
must be solved in a two step m<>nner. The embedding 
density at all atomic sites is evaluated first, then the 
forces may be calculated. Precise details concernmg 
the potential functions employed here may be found 
in the recent paper by Holian et. al[2]. The equations 
are integrated by approximating the time derivative 
by a central difference: 

d'x x(t + "')- 2x(t) + x(t- .;.t) (<) 
dt2 ~ D.t2 

with a time-step (b.t) of about 1/50 of the vibrational 
period (r£). 

The vibration period in simple metals is about 
IQ- 12 seconds. In covalently bonded materials, such 
as Silicate glasses, the vibrations are much faster and 
1'£""' w- 13 seconds. Thus, the time-step in our calcu
lation is a(; most D.t ...._ lQ-14. seconds. The clock time 
for our best currently available processors is "' 10-8 

seconds. We expect no more than one order of mag
nitude improvement in the near future. The best par
a!ielism we can reasonably expect is one processor per 
atom or one MD time-step per clock. In this one di
mensional world of non-interacting atoms, we require 
one second of CPU time to simulate one micro-second 
( lQ- 6 ) of real time. However, life is three dimensional 
and the computational complexity of the time-step it
self costs us about one order of magnitude. The atom 
in~eracts with at least 10 of its neighboring atoms, 
the nature of this interaction is complex and requires 
many clocks to fetch the positions from neighboring 
processors. These three effects cost us an additional 
three orders of magnitude. We might still expect to 
obtain one time-step per clock if we had ava1lable 
103 - 104 processors per atom and the simulation of 
a macroscopic piece of material ( .-.... 109 atoms in one 
grain in a metal) would require a truly massively par
allel machine containing > 1012 processors. Even so, 
this machine will take months of dedicated CPU time 
to simulate one second of real time. The current gen
eration CM2 Connedion Machine has """ 103 Roating 
point parallelism. The simulation of 1 pscc with 109 

atoms will take the CM2 ...., 100· years of dedicated 
CPU time to perform. Another direction, that could 
revolutionize the performance of MD codes, is implicit 
algorithms that increase the time-step by many orders 
of magnitude. However, the equations are stiff and we 
see little hope in this direction. 

In our simulations of metal cutting, we have used up 
to lOG atoms in two dimensions (109 are required in 
three dimensions). We perform the calculation on the 
TC2000 with "' 101 atoms per processor and expect 



Thermostat 

Boundary atoms move to the 
right at the cutting speed. 

Figure 1: The geometry of our steady-state variable
particle molecular dynamics model of orchogonal 
metal· cutting in two dimensions. 

at least 108 seconds (3 years) of CPU time to simu
late 1 ,usee! By performing the calculation for several 
hundred hours, we have simulated times as long as 10 
ns. This is the time scale for chip formation aL cut
ting speeds of,.... 100 m/s. We need at least two more 
orders of magnitude in performance to simulate chip 
formation at cutting speeds of 1 m/s and four orders 
of magnitude beyond that for the three dimensional 
simulation of 1 ,usee with 10 9 atoms, using several hun
dred CPU hours. 

We define the computational complexity of an MD 
simulation to be the number of atoms times the num
ber of MD time-steps. In this regard, the calculations 
presented here (105 atoms x106 time-steps) represent 
some of the largest MD simulations ever performed. 
Naturally, our meas.ure must be multiplied by a mea
sure of the complexity of the interatomic force calcu
lation. We have considered nearest neighbor models 
in which the number of neighbors in 2D is,.... 6 and the 
number of neighbors in 3D is ,..... 18. Materials, such 
as Silicate glass, require a significantly more complex 
(10- 100 fold) description of the mteratomic forces. 

The cartoon in Figure 1 illustrates the geometry 
of our steady state MD model of the orthogonal cut
tmg process. The MD simulation cell is a fixed "win
dow" in the reference frame of the tooL All of the 
motion is constrained to two dimensions. The bound
ary atoms are used to impose the cutting speed-they 
move to the right at the cutting speed. One of our 
future goals iB to couple this boundary region with a 

continuum mechanics simulation outside the MD cell. 
The boundary will dynamically relax, so that both 
stress and strain are continuous across the interface. 
Far from the tool tip, we expect the continuum me
chanics solution to be more than adequate for both 
elastic and plastic deformation. In order to produce 
a steady state flow in our MD model, new atoms are 
continuously inserted from the left, while atoms that 
leave the top or the right hand side of the cell are 
thrown away, Next to the boundary, we place are
gion of thermostat atoms. A time dependent viscous 
damping is added to the equation of motion for these 
atoms[3, 4]: 

cflx dx 
m-- =Force- (m-

dl2 dt 
(5) 

with 

(6) 

The purpose of the thermostat atoms is to draw away 
heat produced by doing work at the tool tip. The 
remaining material atoms are free to dynamically re
spond. The tool atoms do not vibrate and arc fed into 
the work material at 1/5 the cutting speed until the 
tip most atom reaches the desired depth of cut. The 
too! atoms interact with the material atoms via the 
purely repulsive WCA potentia! mode![5]. 

One major failure of the embedded atom method 
is that it does not model the thermal conductivity of 
simple metals. The thermal conductivity of simple 
metals is primarily due to the "free-electrons." The 
EAM assumes that the electrons are always in ther
mal equilibrium and their contribution to the force on 
the atoms can be expressed within a local density ap
proximation. The EAM includes only the "phonon" 
contribution, from the center of mass motion of the 
atoms, to the thermal conductivity. In order to model 
the thermal conductivity due to the electrons, we are 
introducing an additional vi..<;cous damping to the mo
tion of the atoms, A local-temperature dependent ran
dom force is used to exchange energy between the elec
tronic and atomic degrees of freedom. The rate of ex
change is known from the value of the electron-phonon 
coupling. The local temperature is that of the elec
trons, We plan to simulate the flow of heat through 
the electron degrees of freedom by numerically solving 
the diffusion equation with the known thermal con
ductivity of the electron gas. We are also introducing 
heat flow into the tool in a similar manner--diamond 
has a very high thermal conductivity. Coupled par
tide and continuum simulations of this type are cur
rently at the forefront of computation<J-1 physics. Our 



Figure 2; A typical MD simulation celL The atom at 
the center of the circle interacts with all atoms inside 
the circle. In the linked-cell domain decomposition 
scheme, atoms in a given sub-cell interact with atoms 
in nc1ghboring sub-cells only. 

two dimensional results display considerable tempera
ture gradients at 100 m/s and little or none at 10 mjs. 
Suggesting that, at the slower cutting speeds, the heat 
generated per unit time is small and the phonon mech
anism h<LS plenty of time to propagate the heat out of 
the system. This may be all that is required at 1 mjs. 

Our molecular dynamics computer simulaUon code 
is written m the C programming language. C provides 
for complex data structures, pointer arithmetic, and 
dynamical allocatiOn of memory. All of which we find 
indispensable for performing variable particle simula..-
tions. When storage for a new atom is needed, it is 
alloco.ted from interleaved shared memory using the 
shmalloc function. When an atom is removed, its 
storage is given to a buffet which in turn is used when 
required for new atoms. The atoms are connected with 
a double linked-list. The structure for an atom con
tains (m addition to the atomic positions, forces and 
EAM density) a series of linked-list pointers to other 
atoms. Two of which (labeled NEXT and PREVI~ 
OUS) are used to traverse the list of atoms either for
wards or backwards. Both are needed to "reconnect" 
the list when an atom is removed. New atoms are 
always added to the end of the list. 
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Table 1: The output from the UNIX profiler running 
on the Sun SparcStation-1 for the top few routines. 
The calculation simulated the motion of 32256 atoms. 

%time sees #call msjcall name 
76.8 76.53 22 3478.64 _force 
6.1 82.62 mcount 
1.9 84.53 118376 om .rem 
1.7 86.26 21208 0.08 _bigJlUimes 
1.6 87.82 .div 
1.3 89.14 10066 0.13 ...fi!e_to_dec 
1.0 90.13 338510 0.00 .umu! 
1.0 91.08 22 43.18 _bos 
0.8 91.85 22 35.00 _kinetic 
0.6 92.46 2306 0.26 _doprnt 
0.5 92.95 537344 0.00 .urem 
0.4 93.37 1 420.00 _main 

3 The Importance of the Force 
Calculation 

The vast majority of the time, spent in any molec
ular dynamics simulation program, is spent calculat
ing interatomic forces. To illustrate this, we show in 
Table 1 the output from the UNIX profiler on a se
rial version of our code. The example was run on 
a Sun SparcStation-1 which has a performance ( ...... 2 
megaflops) comparable to a single node on the BBN 
TC2000. The profiler monitors library routines as well 
as those in the code. In t.his simulation, the force rou
tine used 77 times more CPU time than the boundary 
conditions routine (the second most expensive routine 
in our code). Naturally, we place most of our effort 
mto parallelizing the force calculation. 

In order to understand how a parallel force routine 
is designed, it is instructive to review how forces are 
calculated in MD simulation codes. F1gure 2 shows 
a. typical simulation cell. The algorithm used to cal
culate the forces depends on the range of interaction 
between the atoms. In materials with long ranged 
Coulomb forces, such as Silicate glasses, every atom 
interacts with every other atom. In simple metals, 
such as Copper and Nickel, the interatomic forces are 
short ranged and every atom interacts with at most 
a few dozen of its nearest neighbors. Here, we focus 
on this latter case. Systolic loop algorithms used to 
parallelize the long range force calculation are a hot 
research topic, currently being pursued by David Fin
cham and coworkers[6]. 



There have been two algorithms developed to opti
mize the force calculation for short ranged forces. The 
CPU time, required to calculate the force, scales lin
early with the system size for both algorithms. In the 
Verlet neighbor list method[7], a list of all neighbors 
within the cut-off range plus a skin depth is main
tained for every atom in the simulation. When any 
atom moves a distance equal to the skin depth, the 
entire neighbor list must be rebuilt. There are two 
drawbacks to this method: it requires a storage lo
cation for each neighbor of every atom and the CPU 
time required to rebuild the neighbor list scales as the 
number of atoms squared. The second method, used 
to calculate forces, is based upon the concept of linked 
lists[8, 9]. The large simulation cell is divided into 
many small sub-cells, the size of which is determined 
by the interaction range. A linked list is evaluated for 
every sub-cell. This linked list contains one entry per 
sub-cell that points at the first atom in the sub-cell 
and one entry per atom that points at the next atom 
in the cell. The entry for the last atom in the sub-cell 
contains the null pointer. The CPU time required to 
generate the linked list scales linearly with the number 
of atoms in the simulation and the memory overhead is 
quite small----one pointer per atom. Because the linked 
list method examines all atoms in the neighboring sub
cells (the force is evaluated only for those within the 
cut-Off), the method runs slower than the neigltbor 
!Jst method for small system sizes on serial machines. 
The cross over is"" 10 2 -103 atoms. The neighbor list 
method performs well on vector supercomputers and 
we find it useful to retain some of its spirit in our code. 
The best algorithm for parallel machines with vector 
processors is a hybrid algorithm in which mini-lists 
are created on the fly fwm the linked-cell lists. The 
mini-list contains the addresses of all the atoms in a 
given sub-cell and all of the atoms they interact with. 
This allows our code to perform wei! in serial mode on 
vector supercomputers such as the Cray X/MP. 

4 A Para!Jelization Strategy 
for the BBN TC2000 

Our curren& development machine is the BBN 
TC2000, operated by the Massively Parallel Comput
ing InitiaUve (MPCI) at LLNL. The MPCI TC2000 
consists of 126 fa.'>t RISC microprocessors (Motorola 
88100). Each processor is located on a separate board, 
along with 16 megabytes of local memory. The nodes 
are interconnected by a scalable "butterfly" switch. A& 
boot t.ime, some of each processor's local memory (6 

megabytes) i.s allocated to an interleaved shared mem
ory pool. It takes about four times longer to access 
this shared memory through the switch than to access 
private memory, local to the processor's board. Thus, 
an efficient computer code must use private memory 
for its computationally intensive tasks. 

The development system on the MPCI TC2000 is 
aimed at a multi-user and multi~tasking environment. 
A small number of nodes (8) are dedicated to a pub
lic duster. These run the familiar UNIX operating 
system and perform the editing, compiling and job 
control that defines the user's interface to the ma
chine. The remaining nodes (118) are assigned to 
a gang scheduled cluster. This is the cluster where 
parallel programs are executed, The gang schedular 
355ures that each user's task is run is a timely and 
fair-share manner. The parallel programming tools 
on the machine consist of BBN's extensions to FOR
TRAN, the Parallel C Preprocessor (PCP)[lO, 11] and 
its extension to FORTRAN (PFP), an implementation 
of message passing (LMPS) based upon the Argonne 
message passing system(12], and various utilities to 
monitor an executing program. We have chosen the C 
programming language for our variable particle molec
ular dynamics primarily because, as yet, the FOR
TRAN programming language does not support the 
constructs required for an efficient implementation. In 
this report, we explore the utility of interleaved sha.red 
memory and the PCP paradigm for the implementa
tion of molecular dynamics algorithms. Message pass
ing schemes for molecular dynamics are concurrently 
being explored on the TC2000 at LLNL by Tony De
Groot. 

PCP provides an extension of the single-program. 
multiple-date (SPMD) programming model in the fa.. 
miliar C programming language. Each processor ex
ecutes the same code and flow control is placed into 
the hands of the programmer. PCP introduces the 
concept of a "team" of processors. A team may split 
10to sub-teams in order to divide up work. Each team 
has one master processor. We find the master block 
(a section that only the master enters) most useful 
in performing serial work on shared memory-work 
tha.t aU processors must know about before the cal
culation can proceed. Flow synchronization is ob
tained through the barrier statement, Every proces
sor reaching a barrier waits until all members of its 
team (including the master) reach that barrier. A 
fast waiting algorithm has been implemented for PCP 
runtime support. Additional flow control for critical 
sections is accomplished with locks. A critical sec
tion is a region of the code in which many processors 



access the same resource and, to al!ow them to do 
so, would corrupt the results. Accumulating partial 
sums into a shared sum is a commonly encountered ex~ 
ample. PCP provides the lock( &lock.. variable) and 
unlock(&lock_variable) functions to isolate critical 
sections. The lock variable is stored in shared memory. 
The first processor entering the critical section sets the 
lock variable to locked and proceeds with the calcu~ 
lation. Meanwhile, the remaining processors test the 
lock variable to see whether it is locked. When the 
first processor finishes the calculation, it sets the lock 
variable to unlocked. The next processor to find it 
unlocked immediately locks it and proceeds with the 
calculation. 

Parallelism is accomplished with the forall loop. 
The for loop in C is similar to the do loop in FOR
TRAN. The forall loop divides the indices of a for 
loop evenly amongst the available processors. Each 
processor does the work for the value of the index it 
knows about, Possibly one of the most useful aspects 
of PC1> is the transparent access to both shared and 
pr1vate memory. Declarations are made with the pri. 
vate and shared storage class modifiers and dynam~ 
icai memory allocation is made using the prmalloc 
and shmalloc functions. 

To see how these constructs are used in an MD code, 
1t is useful to examine the MD algorithm in more de
tail. The MD algorithm has many features in common 
with most computer simulation algorithms: 

1. Initialization 

(a) read input file 

(b) initialize positions and velocities 

(c) bcs-apply boundary conditions 

2. Main Simulation Loop 

(a) celler-generate linked-cell lists 

(b) force~a.!culate interatomic forces 

(c) advance-obtain new positions using central 
difference 

(d) kinetic-calculate kinetic energy 

(e) output-accumulation and output 

(f) bcs-apply boundary conditions 

(g) finish?-otherwise loop again 

3. dean up and close files 

The initialization block represents a small amount of 
work that is performed only once. We place a master 
block around this section and concentrate on the main 
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simulation loop. The bulk of the work is performed in 
the force routine and we discuss that first. 

Our force routine consists of three pieces (the cal
culation of the EAM density, the interatomic forces 
and the tool atom forces) as shown in the following 
code fragment: 

for( i = 0; i < nx; i++ ){ 
::tor( j = 0; j < ny; j++ ){ 
::tor( k = 0: k < nz; k++ ) { 

])} 

a..ptr = cell[i] [j] [k] ,start..ptr; 
vhile( a..ptr != !lULL ) 
{ 

} 

eamwdonsity_'llork; 
a..ptr = a..ptr- >next; 

tor( i = 0; i < nx; i++ ){ 
tor( j = 0; j < ny; j++ ){ 
tor( k = o; k < nz: k++ ) { 

}}) 

a..ptr = cell [i] [j] [k], start.ptr; 
lihile( a_ptr != JruLL ) 
{ 

} 

atomic..! orce.'llork; 
a..ptr = a.ptr- >next; 

t_ptr = first.tool..atom; 
ilhile( t_ptr != NULL ) 

{ 

} 

tool...force.ilork; 
t_ptr = t_ptr->next; 

As described by Rapaport[13], the use of linked~cell 
lists introduces a "natural" domain decomposition 
parallelism into the MD algorithm. We simply con~ 
vert the three for loops into a single forall. As each 
processor encounters the loop, it does all of the work 
for the sub-cell it is assigned to. Care is taken to 
assure that each processor has private copies of all pa
rameters in the force calculation. The positions of the 
two interacting atoms are copied into private memory 
while the total force on each atom is accumulated into 
shared memory. In that each sub-cell contains ....., 10 
atoms, the number of atoms in the simulation must be 
>> 103 to provide sufficient parallelism for our present 
machine("" 100 processors). We typically run the sim
ulation with ;::: 105 atoms. The serial version of our 
code takes advantage of the fact that forces are equal 
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Figure 3: The instantaneous force (load) on ~he tool 
as a function of indentation for a 2D EAM simulation 
containing 43440 atoms in 160 layers and a tip radius 
"'5nm. 

and opposite--the pa1r mtcradion is only calculated 
once. This imposes Lhe placement of locks at each pair 
calculation and the resulting speed-up does not exceed 
G-7. By performing twice lhe work, we elimina.tc this 
"race" condition and have achieved speed-ups"' 75 on 
96 processors. 

The while loop used for the tool force calculation is 
characteristic of linked-bst data structures. The bulk 
of the work throughout the rest of the program con
sists of loops of this type. PCP dor_s not provide a 
construct for parallelizing this loop, even though all 
of the work for each alom pointer is intrinsically par
allel! This is because the addressmg in memory is 
random and there is no a priori. way to divide the 
work. We convert this while loop into a fornllloop by 
defining an array of "first atom pointers." These ate 
generated once per time-step at the end of the bound
ary conditions routine (assuring load balancing). The 
length of the array is equal to the number of processors 
executing the program (obLained from the PCP read 
only variable _NPROCS). The work is divided evenly 
amongst the proces:;ors as follows: 

forall( int i = 0; i < ...NPROCS; i += 1 ) 

( 
a_ptr = :first_tooLatom[i]; 
n_ptr = :first_tooLatom[i+l]; 
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Figure 4: The calculated shearing stress field for an 
ela..stic indentation of 3 layers in the system containing 
43440 atoms in 160 layers in 2D. Each atom is shaded 
by the local expectation value of the shearing stress. 

} 

while( a..ptr != n_ptr 
( 

} 

tool...:force_work:; 
a_ptr = a_ptr->next; 

The linked-eel\ list generating routine (ecller) 
presents a special problem in that all of the work is 
in crittcal sections. However, by introducing a sepa
rate lock variable for each sub-cell, most of the race 
condition is eliminated. The boundary conditions rou
tine (bcs) performs the work of creating and remov
ing atoms and generating the overall linked-list data 
structures. This work is inherently serial and, as we 
shall sec, limits the performance of our code for large 
processor counts. In a constant particle number sim
ulation, however, this work need be performed only 
once. 

5 Test Problem Results 

As described above, we are applying the molecular dy
namic..<; method to orthogonal metal cutting. This is 
a dynamic tribo!ogical problem in which two interact
ing surfaces are in relative motion. In our case, the 
diamond surface is significantly hat·der than the metal 
surface and we model it as inflnitely hard, choosing 
to concentrate on the ela..stic and plastic deformation 
of the work material. Before studying the more gen-



Figure 5: The calculated shearing stress field for a 
plastic indentation of 6 layers in the system containing 
43440 atoms in 160 layers in 2D. Each atom is shaded 
by the local expectation value of the $hearing stress. 

era! problem of sliding surfaces, we have found it. in
structive to first study the indentation of a stationary 
surface. 

A vast amount of lllformation is known concerning 
the indentation of metal surfaces[l4]-this is the ex
perimental method of measuring "surface hardness." 
The results presented here are for a two dimensional 
simulation of an embedded-atom m3tenal. We arc 
c\ltrently extending the work to three dimensions The 
work material contains 43440 atoms in 160 layers ini
lially on a triangular lattice. The tool tip radius is ,..__ 
5 nm. We perform the calculation in an iso-thermal 
,11Hl qtw.si-static manner: all of the material atoms arc 
coupled to a thermostat at room temperature and the 
indentation rate (I layer per 1000 Einstein vibrational 
periods) is constant and slow enough to allow a!l of 
the material atoms and dislocations to relax to equi
librium. Faster rates do not allow this and results 
obtained at faster rates do not represent the exper
imentally measured properties. Our calculation ran 
for L5 x lOG MD time-steps. Shown, in Figure 3, is 
the resulting load on the tool as a function of inden
tation (1 layer :::::J lu) Between 0 and 3 layers, all of 
the deformation is elastic and the load rises linearly 
with indentation. At 3.5layers, t.he material yields by 
creating a dislocation that propagates down one side. 
The load relaxes slightly, until at 4.5 layers, stress be
gins to build on the other side. At 5.5layers, that side 
y1elds as well. f'urther indentation produces further 
plastic work of the material. Figures 4 and 5 display 
our calculation of the shearing (deviatoric) stress field 
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Figure 6: A snapshot from our molecular dynamics 
simulation of the orthogonal cutting of an EAM ma
terial in two dimensions containing"" 100000 atoms in 
200 layers. The simulation is performed at room tem
perature and the depth of cut is 32 layers ("" 8 nm). 
The atoms are shaded by the local expectation value 
of the shearing stress and the mated a! flows from the 
left to the right at 100 m/s past the stationary tool. 

at 3 and 6 layers, respcdively. Stress is an inherently 
m<u::roscopic concept and, to make connection with the 
microscopic MD model, we must perform an ensemble 
average over a finite region of space. In our calcula
tion, we stop the tool at the desired indentation and 
average the microscopic stress tensor within each sub. 
cell for 5,000 MD t1me-steps. The flgures are genet·
ated by shading the atoms with the local expeclation 
value of the shearing stress. The circular pattern in 
Figure 4 is the well-known Hcrtzian ei<IStic stress field. 

Our stmulalion has many features in common with 
cxpcriment(15, 16}. Micro-indentation experiments, 
however, are performed at a constant load \Vhen a 
critical load is achieved, the tool suddenly jumps for
ward. This corresponds to the initial yield as shown in 
Figure 3 and the jump is dear across to th,; next build 
up of stress. The micro-hardness (load divided by the 
area of contact), calculated from our simulation, is 
H ,.._, 3Y, where Y is the ultimate yield strength of 
the material. This is 10 - 100 times larger than ex
pected for a macroscopic hardness. However, recent 
experiments on this microscopic length scale, observe 
a dramatic mcrease in hardncss[16]. We conclude that 
when the deformation occurs on a length scale much 
smaller than the material grain size, the work required 
to plastically deform the surface is the work of "creat
ing" dislocations in addition to the work required to 



Figure 7: A close up of the region near the tool tip for the snapshot shown in the previous figure. The figure 
displays ,...., 10000 atoms. The primary slip band takes the form of a grain boundary and, as indicated by the 
arrows, a small grain is formed on the fatigued surface. The simulation is forming localized bands of intense shear 
as found in ultra-high-speed machining. 

move them. Another interesting result from our sim
ulation, is that when the tool is removed, the disloca
ttons anneal out-they propagate back to the surface 
leaving no sub-surface damage behind! The time scale 
for this dislocation motion is nanoseconds and simu
lations of shorter times will not observe effects of this 
type. 

Of far more technological significance is our MD 
simulation of metal cutting-two interacting surfaces 
in rdat1ve mot1on. Shown Ill Figure 13 is a snap
shot from our orthogonal cutting simulation contain
ing,...., 100000 atoms in 200 laters in 2D, a tip radius 
of 20 nm, a depth of cut of 8 nm, at room tempera
ture, and at a cutting speed of 100 m/s. This speed is 
about two orders of magnitude faster than the speed 
we would like to run the code at( ........ 1 m/s). Shading 
is used again to represent shearing stress and many 
active shear bands arc dearly evident. The primary 
shearing of material occurs along a curve that runs 
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from in front of the chip, underneath the tool and onto 
the clearance face. This curve is a grain boundary in
terface and is observable in Figure 7: Figure 7 shows 
a close up of the region near the tool tip. Underneath 
the clearance face is a small grain on the surface that 
has been generated by the primary shear band. This 
structure is strongly reminiscent of the mechanism by 
which wear particles are believed to be generated on 
fatigued sutfaces(17, 18}. 

The ultimate success of any computer simulation 
model is determined by how well it reproduces experi
mental measurements and its ability to help interpret 
and extend our description of reality and the applica
tion of this description to useful technology. In Fig
ure 8, we show a comparison of our simulations with 
the recent measurements of Moriwaki and Okuda[19]. 
Our results are preliminary. However, we find a rather 
interesting result~the specific energy (the work per
formed by the tool per unit volume of material re-
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Figur:e 8: The specific energy (work per unit vol
ume of material removed) plotted versus the depth 
of cut normalized by the "tool tip radius. The open 
squares are the experimental measurements of Mori
waki and Okuda for the micro-machining of Copper at 
23 m/s. The solid circles are the molecular dynamics 
results The simulations were performed for tool tip 
radii 1.25nm, 2.5nm, 5.0nm, and 20.0nm at cutting 
speeds of 10 and 100 mjs. 

moved), when plotted versus the depth of cut divided 
by the tool tip radius, falls onto a universal curve! 
There are two distmct regions of this curve. For 
depths of cut much greater than the t1p radius (d ~ 
1 pm), we find E,...., (djr)f, with t R: -0.2. For small 
depths of cut, t ~ -0.8. These two regions occur be
cause of differences m the mechanism of plast.ic defor
mation. At large scales, the deformation occurs along 
grain bound<J.ries, with little or no deformation within 
the grain. The exponent oft ~ -0.2 is well-known fot' 
macroscopic metal cutting[20], At smaller scales, all 
of the deformation occurs within a grain (grain sizes 
are typically "' 1 11m). The work performed by the 
tool is the work required to break and reform every 
bond in the path of the tool. We are pleased that the 
simulation agrees with experiment over the two orders 
of magnitude for which we have done the calculation. 
Complete reports of both our indentation simulations 
and orthogonal metal cutting simulations in two di
mensions are currently being prep1ued for submission 
to the }o'Umal of Applied Physics. A preliminary re
port of the indentation simulation was presented at 
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Table 2: A comparison of single processor performance 
on the BBN TC2000 and the Sun SparcStation-1 simu
lating the motion of 32256 atoms in three dimensions . 

TC2000(,h) TC2000(p•) Sparc-l 
Total(sec) 551.17 281.89 111.61 
celler !.50 0.80 0.40 
force 540.32 278.44 138.19 
adv+io 4.23 2.43 1 25 
kinetic 2.64 1 49 2.01 
k' 2.49 1.74 2.76 

the MRS Symposium on Atomic Scale Calculations 
of Structure in Materia!s(21J and a preliminary report 
of the orthogonal met;;~.! cutting simulations wa.s pre
sented at the 1990 Annual Meeting of the American 
Society of Precision Engineers[22]. 

6 Performance Results 

Our parallel molecular dynamics algorithm has been 
implemented on the BBN TC2000 using the PCP 
programming paradigm and ha.s been used to gen
erate the results described above. In this section, 
we present performance results for the code running 
011 the TC2000 with up to 100 processors and com
pare to the performance of the Cray X/MP and 
a commonly available desktop scientific workstation, 
the Sun SparcStation-1. The performance of the 
RISC based Spare CPU (.-... 2 megaflops) is compa
rable to the lUSC based Motorola 88100 (- 3- 4 
megaflops) and we use the Sparc-1 a.s our base unit 
of performance. The current memory configuration 
(6 megabytes of interleaved shared memory per node) 
of the TC2000 at Livermore allows us to fit up to 
"'5 X 106 atom<> in core (-100 bytes per atom). Sim
ulating the motion of 5,366,592 atoms on 108 proces
sors, our code performs one 3D time-step in 20 mm
utes of CPU time and one 20 time-step in 4 minules 
of CPU time. The factor of 5 difference in perfor
mance is due to the additional degree of freedom per 
atom and a factor of 3 increase in the number of inter
acting neighbors in 30 over 2D. Timing comparisons 
with fewer processors are prohibitively expensive for 
this large system size. Our present simulation code 
is fully three dimensional and the bulk of our future 
calculations will be with. this code. Thus, we present 
here, timing comparisons for 3D EAM molecular dy
namics simulations containing 4032, 32256 and 258048 



Table 3· CPU times to simulate one molecular dynamics time-step of a 3D EAM material containing 4032 atoms 
on the BBN TC2000 with 1- 96 processors. 

processors 1 2 4 8 
Total( sec) 68.73 34.75 17.69 9.20 
ccllcr 0.19 0.09 0.05 0.03 
force 67.31 33.90 17.14 8.70 
adv+io 0.56 0 31 0.17 0.11 
kinetic 0.34 0.18 0 10 0.05 
be> 0.33 0.27 0.24 0.21 

atoms. All of our calculations are performed with 64 
bit floating point precision. The benchmark calcula
tions were performed on a quiet system~no other jobs 
in the gang scheduled cluster. 

Shown in Table 2 are timings for the code executing 
on a single processor for the Sparc-1, the TC2000 us
ing only node private memory, and the TC2000 using 
interleaved shared memory for the ATOM and CELL 
structures. In both cases, the processor has a private 
copy of all parameters (other than atomic positions) 
that define the calculation. The serial code running on 
the Sparc-1 assumes forces are equal and opposite and 
hence performs about half the operations of the paral
lel code to achieve the same useful work (a molecular 
dynamics time-step). The shared memory overhead 
is about a factor of two and appears to be uniform 
throughout the code. As de.gcribed above, the basic 
loop in our code is: 

a_ptr = "first_atom_ptr [i] ; 
n .. ptr = first_atom_ptr[1+1]; 
1o1hile( a..ptr != n_ptr ) 
{ 

} 

r_p -:.: a...ptr->x; 
more_work; 
a_ptr = a_ptr->next; 

The pointer variables (a.._ptr, n_ptr) are private 
to the processor, while the starting pointers 
{first..atom.~ptr) are shared. The private floating 
point variable x_p is used to copy the positions of the 
atoms into local private memory for the calculation. 
The additional work (especially for the force routine) 
should far exceed the overhead for this copy. Atoms 
travel from sub-cell to sub-cell and, to perform vari
able particle simulations, we dynamically create and 
remove atotn.'l from anywhere in the list. Thus, the 
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12 16 24 32 48 64 96 
6.18 4.77 3.39 2.65 2.03 1.62 1.56 
0.02 0.02 0.01 0.01 O.Ql 0.01 0.01 
5.85 4.43 3.05 2.33 1.68 1.31 1.21 
0.06 0.08 0.09 0 07 0.09 0.06 0.09 
0.04 0.04 0.03 0.03 0.04 0.04 0.0.\ 
0.21 0.20 0.21 0.20 0.20 0.20 0.21 

storage for the ATOM structure is equally likely to be 
in any node's memory. If we were to determine a pri
ori which atoms are in which processor's local memory, 
we should expect to obtain a considerable speed-up. 
A larger domain decomposition scheme, that assigns 
a set of atoms to each node, achieves the desired map
ping However, interdomain interactions and diffusion 
complicate the program structure and effect load bal
ancing. Nevertheless, this may be the only solution 
and we will pursue it in our future work. Consid
ering the factor of two in operations performed, the 
TC2000 using private memory is comparable to the 
Sparc-1. We had expected the TC2000 to be ,..., 1 5 
times faster. The difference is most likely due to the 
PCP constructs used to obtain parallelism, none of 
which exist in the serial code. The ccller routine is 
an extreme example in which the PCP code Jocks ev
ery inner loop. 

The Cray X/MP vector supercomputer, operated 
by the Open Computing Facility (OCF) at LLNL, is 
representative of the class of computer currently used 
to run large scale scientific codes. The clock speed of 
the X/MP (9.5 ns) is about 5 times the dock speed of 
the Motorola 88100 and Sparc-1 killer microprocessors 
(50 ns) and this wou!d be all of the performance gain 
we would find on the Cray if we do not take advantage 
of the vector capabilities. Furthermore, we anlicipate 
that future generation killer micros will have vector 
subsystems. As described above, our force routine 
generates "mini-lists" from the linked-cell lists. The 
GATHER/SCATIER scheme, as described by Fin
cham and Ralston[23], is used to vectorize the force 
calculation. We obtain a speed-up of 12.5 over the 
Sparc-1 for a single node on the 4 processor X/MP. 
A detailed analysis of the force routine reveals that 
,.._, 50% of the time is spent in the scatter section, in 
which no useful work is performed! We have devised a 
memory intensive scheme to vectorize the scatter sec
tiOn. However, it is prohibitively memory expensive 



Table 4. CPU limes to simulate one molecular dynamics time-step of a 3D EAM material containing 32256 atoms 
on the BBN TC2000 with l- 96 processors. 

processors 1 2 4 8 12 16 24 32 48 64 96 
Total( sec) 551.17 276.70 110.26 71.31 48.64 36.94 25.78 20.26 14.66 11.89 9.35 
ccller 1.50 0 75 0.38 0.19 0.13 0.10 0.08 0.06 0.05 0.05 0.05 
force 540.32 270.50 136.30 68.56 46.26 34.73 23.72 18.22 12.71 9.96 7.73 
adv+io 4.22 2.12 1.10 0.57 0.40 0.34 0.29 0.30 0.26 0.25 0.25 
kinetic 2.63 1.32 0 66 0.34 0.23 0.17 0.12 0.10 0.08 0.07 0.07 

b" 2.49 2.01 1.82 1.65 1.61 1.59 1.57 1.58 1.56 155 1.55 

Table 5: CPU times to simulate one molecular dynamics time-step of a 3D EAM material containing 258048 
atoms on the BBN TC2000 with 1 - 96 processors. 

processors 1 2 4 8 
Total(scc) 4424.29 2221.09 1125.90 572.42 
celle.r 11.91 5.97 3.03 1.51 
force 4340.05 2172.74 1094.79 5.50.70 
adv+io 31.71 15.96 8.38 4.33 
kinetic 20.72 10.40 5.21 2.65 
b" 19.88 16.01 14.49 13.20 

when the motion of more than a few hundred atoms 
is simulated. 

The partially vcctotized Gray version performs half 
the operations per time-step as docs the parallel ver
sion and con tams none of the parallel overhead. Given 
the timings in Table 2, we require a speed-up of at least 
48 on the TC2000 to obtain comparable performance 
with the Cray--the same number of MD time-steps in 
the same wall clock time. Shown in Table 3, 4, and 5 
are timings for 3D EAM simulations with 4032, 32256, 
and 258048 atoms, respectively. The timings were ob
tained with the get64bitclock() function and were 
performed on a quiet system~no other jobs in the 
gang scheduled cluster. Several observations may be 
made: 

1. With small processor counts, the force calculation 
is by far the dominant part o[ the calculation. 

2. We begin to exhaust the available parallelism for 
the small system with large processor counts. 

3. The boundary conditions routine has not been 
parallelized and is becoming comparable to the 
force routine for large processor counts. \Ve must 
eliminate this serial section if we are to ever take 

12 
388.40 

1.07 
369.38 

3.10 
1.79 

13.06 

16 24 32 48 64 96 
295.71 206.30 160.01 116.37 93.56 72.48 

0.81 0.59 0.48 0.39 0 36 0.35 
278.38 190.04 144.32 101.14 78.76 57.82 

2.48 2.17 2.01 1 86 1.67 1.68 
1.35 0.92 0.70 0.50 0.40 0.31 

12.69 12.57 12.50 12.47 12.36 12.32 

advantage of the 103 - 101 processors expected in 
the next generation parallel supercomputer. 

4. The force routine achieves only 75% efficiency 
with 100 processors. In order to achieve 75% 
efficiency with 1000 processors, we must obtain 
97.5% efficiency with 100 processors 

5. The timings scale better than expected with sys
tem size! The lmkcd-ccll algorithm is expected to 
scale linearly with the number of atoms. The time 
required with 258048 atoms is actually less than 
the expected 64 fold increase from that with 4032 
atoms. This is undoubtedly due to the many-fold 
increase in available parallelism. 

6. We achieve a. speed-up of 48 with '""' 64 proces
sors. This is the performance required to do the 
same useful work as t.hc partially vectorized Cray 
code. It must be re-iterated that this is for a full 
production MD code! 

Figure 9 is a plot of the parallel efficiency of the var
ious routine<J in our MD code simulating the molion of 
32256 atoms. The parallel efficiency is defined to be 
the time to execute on one processor divided by the 
time to execute on n processors divided by the number 
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Very efficient Molecular Dynamics Codes for 
Multi-million Particle Systems 

Z.A. Rycerzl 
Central Research Laboratory, Hitachi Ltd., Tokyo 185, Japan 

Timing results for two O(N) MD programs for the simulation of 
large 3··D short-range interaction systems are given. The programs 
are based on two recently published codes [1,2] and they have been 
developed and optimized for the Hitac M-series serial computers 
(M-280,M-680, M-880). The first program called MDSPl H 
corresponds to the scalar pyramid described in paper [ 1] and it 
does not use any nearest-neighbour (NN) list, while the second one 
called HISPNL [2] uses a NN list. Consequently the first one requires 
less computer memory (memory for this program does not depend 
on the choice of cut-off radius Rc) but is about 2.5 times slower 
than the HISPNL program. Both programs are truly order of N 
programs and their cpu time for the calculation of forces tn (per 
time step and per particle) is strictly proportional to the average 

number of NN contained in the Rc sphere ("av = 4n:R~p/3, where p is 
the number density). This cpu time contributes to 90-95% of cpu 
time for the entire simulation and can be simply expressed as: 

a) MDSP!H program, 

tn = flav X ~nt ( 1) 
b) HISPNL program, 

tn = Oav X (Tint+ T~sJNTUPDA) (2) 
where Tint and Tass are the cpu times per single interaction (i.e. 
per a single local neighbour) that are needed for the calculation of 
interactions (distances, forces, potentials, virial ... ) and assignment 
of NN, respectively. NTUPDA is the frequency of the NN list updating 

• 
(typically 10 to 20) and TinL in eq. (1) combines both Tint and Tass 
(these times cannot be separated in that code). The tests have been 
performed for nav from 33.5 whic-h corresponds to Rc equals a half 
side of a cube containing N=64 particles (Rc=H(64)) up to nav= 113 
(Rc=H(216)) and over very large range of N (from N=64 to 
N=8788000) showing very stable values of Tint and Tass cpu times. 
On the Hitac M-880 single processor serial computer with 64 bit 
word length these times are equal to: 

• Tin< = 1.5±0.1 f!S 

Tint = 0.56±0.03f!S 
Tass = 0.9±0.1 f!S 

(3 a) 
(3 b) 
(3c) 

10n leave of absence from: Department of Chemistry, The University of 
Western Ontario, London, Ontario, Canada N6A 587. 
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As an example in Table 1 are given the cpu times per time step 
and required memory (in brackets) for these programs on the 
M-880 computer for selected sizes of 3-D systems (for HISPNL, 
NTUPDA=20). 

Table 1. Cpu time per time step (in seconds) and required central memory (in Mb; 
the values given m brackets) for the HISPNL/MDSPlH programs on the Hitac M-880 main 
frame. 

system SIZe N 
code 

128 1000 110592 1000000 

0.0027 0.020 2.4 19.3 
SPNL (27) (226) - -

SP 
0.0065 0.050 6.2 50.3 

- - ( 14) ( 116) 

Both programs can be easily adopted for the simulation of 2-D 
systems. An estimated cpu time for a 2-D version of the HISPNL 
program on the M-880 computer and for similar conditions to those 
quoted in ref. [3] is between 2 and 3 seconds per step for N=J06 
and therefore, almost two times less than for the LLC method on 
the Cyber 205 vector computer [3]. 

Presently, work on the vectorized MD code based on the method 
described in refs. [4,5L as well as on an MD code for the simulation 
of large multi-ionic systems with direct Ewald summation used for 
the coulombic forces, are in progress. Preliminary estimation of cpu 
times for these vectorized codes on the Hitac S-820 vector 
computer (single processor, 4 ns clock period) are as follows: 2-2.5 s 
per time step for N=J06 (3-D, short-range interaction, nav=33 .5), 
0.3 s per step for N=J06 (2-D, short-range interaction, nav=5) and 
order of 10 cpu second per time step for N=J06 (3-D, multi-ionic 
systems). Therefore, an estimated cpu time for a 2-D simulation of 
1000 time steps and N=J06 is order of 5 cpu minutes on the S-820 
supercomputer. More detailed data regarding the speed 
performance of these new vector programs will be published in the 
near future. 
The M-880 is equipped with huge memory (up to 2Gb main 
memory plus 8 Gb fast extended memory with the speed transfer 
of 2.2 Gb/s) that makes it possible to simulate 3-D MD systems 
containing up to 90 millions of particles by the MDSPI H program 
and up to 45 millions by the HISPNL program. For 2-D systems 
these figures may be increased by factors of 1.5 (MDSPI H program) 
and 2 (HISPNL program), respectively. On the S-820 supercomputer 
it is possible - in terms of cpu time and memory requirements (up 
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to 12.5 Gb combined memory) - to simulate the systems as large as 
N ~ 1 Q8 particles. In a 2-D case such a simulation would require 
order of 30 cpu seconds per time step. 

It should be pointed out that those vector programs are very 
suitable for multiprocessor vector computers. Typically more than 
85% of the total cpu time in these programs is consumed just for 
the calculation of mutual interactions between particles and this is 
performed over vectors of length N [41. This part of the calculation 
can be simply (and arbitrary) divided into smaller parts (sub-tasks) 
that can be calculated independently, and therefore at the same 
time, on different processors. 
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A Visit to the U nitccl 1\ingclom 

G. Malenkov, 
Institute of Physititl Chemistry, 

Academy of .Sciences of the USSH, 
Lcninsky Prospect, :3 l 

i\Joscow 11701.5, 
USSR 

June 5, U)9L 

In December lD89 [ recl'!i'>ed an invit.ntion from Dr W Smith to Vtsit th~~ UK within 
the frmnework of t.lte CCPG project. This invitation wa.'l quite unexpected and [ was 
vr,~ry glad to accept. it. A year and a half hefon:, Professor .J S Rowlinson had visited 
our La1Jorat.ory and we had had many interest.ing and st-imulating discussions. I was 
acquainted, of conn;f:J, with th.e work of some British n:s~:t~.rch groups which w~re involved 
in computer simulat.ion of ph,yslcal chem.iccd systems on the molecular ievd, <tncl our 
Laboratory regularly received CCP5 Newsletters. With the help of FAX nnd TELEX 
the schedule of my two week journey was ~oon worked out. As I am involved in computer 
sinud<tt.ion of various aqueous systems, bot-h biological and inorganic, [ wanted to visit, 
besides Drtreshury Lrtboratory, Birkbeck C')llege in London, J S Row limon'~ laboratory 
in Oxford and a group involved in X-ray structural analysis of DNA and polynucleoticles. 
Dr W Smith suggested I visit Professor W Fuller's group in Keele. 

I had planned to arrive in London on the ith of i'v[ay 1000 btLt my entrance visa 
WA.> not ready, so I <trrivecl on the Lith. I spent two clays, Monday and Tuesday, in 
n~ry intensive rtnd ~timulating discussions wit-h .Julia Goodfellow and her colleagues. 
The work performed in .1 Goodfellow's group is very close t.o my interests. Being a 
cry~t.al!L)grapher by education, [ have been interested for a long time in the st-ructure 
of water ;tnd aqueous solutions, hydrogen bond patterns in crystals and hydration of 
hiopolymers. I discussed aU these problems in Birkbeck. LV[y one hour lecture was 
dedicated to computer simulation of the DNA hydwt.ion shelL 

On Wednesday I walked to the Royal Institution. 1 plunged t-here into the atmosphere 
of mineralogy and inorganic chemistry. We discussed with Professor C R A Cat-low and 
his students the problems of the structure and 1<\t.tice dynamics of oxides and silicf1.t.es, 
diffusion of adsorbed molecules in zeolites and other topics. I told Professor Catlow 
ahout om works (performed by M l'v( Frank- Kmnenetskii .'lnclmyself) on the l\'[onte Carlo 
mnulation of the zeolite A · w<tter system. The unique n.t-mosphere of this Institution, 
where modern computers with excellent. molecul<1.r graphics are surrounded by a X[X'th 
century interior and where the presence of ~~I Varaday's spirit can still be felt, st.imulateJ 
fruitful discussions. 

1v[y schedule in London was n:ry tough, so I had very little time for sight-seeing and 
cultural progrf1.nune_ [spent four hours in the British Mu~eum (one needs at least <Hl 

order of magnitude more time to get even a superficial idea about what i~ exhibited 
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there) rtnd, dtte to t-he collftesy of Julia Goodfellow, saw Coriolanus a~ the B"'rbican. 

Perhaps it was not bad ['or t.he first visit to London_ I spent a pleasant time in .J 
Guutll'ellow's hottse and w<tlked along London streets. 

On Thursday at nine o'clock in the morning [ was on the train to Oxford. Two 

honrs lat'.:r [ was met by Professor .J Row Iinson at the ra.ilway station. He took me to 

his lahoratory, t.hen I walked a little and we md near Exeter College where we had our 

lunch. Professor./ Rawlinson showed me to the room !'or the guests of the College with 

a huge sit-ting room where I could g1ve a reception !'or a least 20 guests (unfortunrttely [ 

had not so many rtcquaintrtnces in Oxford!) and a very cosy bedroom. At fo\lr o'clock I 

gave a lecture on the computer simulation of water in small pores of zeolite and c<trbon 

adsnl'lwnts. Some pr.opk from the Royal Inst-itution were also present. After t.he seminar 
[ had discussions with t.he researcheres at the laboratory rtnd saw some experimental 

t'quipment. 'The Physical Chemist.ry Ln.bowtory Headed by Professor ,J S Rowlinson is a 

modern, we!l"eqllipped Lahoratnry wlu~re experimenti\1, theot·eticrtl and computational 

works <tre CJptimal!y eombined. TlH! main directions of the work of the Laboratory 

are ~-ery close to those of the Institute of Physical Chemistry where I work. It was 

w~ry ple<~sant f(Jr me to hear Professor Rowlinson's high <tppreciation of experiments on 

aclsorbtion performed at the Laborat.ory of Adsorbtion in our lnst.itut.~_e. 

At ~ev0n o'clock [ was invited to dinner at the College. Some fellows of various 

specialities were presen~ so there was very intet·~'st.ing general discussion. 

Though I had read something about Oxford, reality surpassed all my expect.at.ions. 

The atmosphere in the city, in the College, and especially during t.he dinner was so 

nnusnal that [ felt abs~Jlutely unpreprtrecl for it. [ am very grateful to Professor J S 

R.owlinson t.hat f have had t.he op[lortnnity t-o s1wnd some clays in that wonderful plate. 

On Friday I went by car with some yo1mg colleagues from the laboratory to a meding 

in Southampton. Talks on molecular dynomics simulation of monolayers, Langmuir

B!odget films, micelles and polymers performed in Oxford, Sont.hampton, l\:f<tnchester 

and, perhaps, ot.her plates were given there. After lunch an <tbsorbing lecture covering 

all the mentioned ~LLbjects was delivered by iv[ Klein. Unfortunately too little time 

was left for the discussion. After the meeting we returned to Oxford and I enjoyed the 

hosrHtality of l\hs i1.nd Professor Rowlinson. 

On Saturday Mrs and Professor Rowlinson took me to St.ratford-npon","\von, this 

sacred place where the genius of wnrlcl cult-ure wa~ born and died. 'vVe saw there a very 

original product. ion of "Com8dy of r::rrurs". 
On Sunday [ crossed hi1.lf of Britain and left the train in VI/arrington. I W<\S met by 

Dr W Smith who brought me at- first to the hostel and then to his home. How different 
British families are but <til I met were ext-remely cordial and ho~pitable. After dinner I 

;vas taken to Chester a ~mall town full with historic"-1 monuments, where one can feel 

hre<Lth of history. 

Dares bury Laborator,y is an ideal place for a scientist to wod;:. I shall not describe it 

fot· it will be well-known to most of the readers. Surrounded by country and picturesque 

lnndscape it creates ;dl the possibilities for creative work, for concentration of strength 

anc\ mind. But I had no time for such concentration. Seminar on Monday, visit to 

Keele and seminar there on Tuesday, discussions, discussions, discussions. In my lecture 

at D<tresbury I sroke about some app10aches we used in our work on the simubtion 
of aqueous systems: the F-structure concept, dynamical criteria of hydrogen bonding 

m simubted liquid and the application of Grivtsova"Grivts0v formula for estimation of 
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the diffuswn coefficient in capi!l<trs and porow; media. In [(eele l gave a talk on the 

strnct.tue of the DNA hydration slwll. It was a somewhat different version of my talk in 
Birkbeck for the majority of t.lte uudience were crystallographers directly involved in the 
determirwt.ion of the polynucleotide structure. Unfortunately Professor 'vV Fuller wus in 
LV[oscow at. the time, but [had very interest.ing discussions with his colleagues. I had <Lil 

opportunity to discuss some problems of t.he sbte of adsorh,;d molecules in zeolites <LS 

well. 

A short excursion to the DC\resbury Laborrttory impressed me greatly. Such a vanety 
of md:hods, approache.5 and subjects of investigation! 

And [ cun again in the train, making it.5 way to the Nort.h, to Glasgow. [ S<LW 

tremendous landscapes through t.he window. I Wf\S md by Dr David White at. the 
stat.ion. 'I'he third lecture on DNA hydration, the thml version of it. I t.ried to make 

it more rorular, for specmlists in different tlelds were present. And then agnin to t.he 
South, back to Oxford. 

Professor .J Finney met me at the station at 5 pm on Friday. The atmosphere 
in Rutherford L<t.boratory is scJUwwhat different. from th<\t in Dare~bnry. Perhaps it. 's 
became they are given counters of radi<J.t.ion there. Again such a variety (Jf methods C\nd 

objects. Most of all r W(l.S impressed by the deterntination of the structure of(\ rather 
complex sample using only powder neutron diffraction d<tta. Work on ~he struct.ure of 
the surface of !tquid water, on bi1)polymer5 and llHt.ny others were also very interesting. 
For me t:he clay ended with a rabbit pie in the pub in t.lw internutional company of .J 
Finney and his colleagues. After this informal meeting scietttists from the Lab returned 
to their working places and l went to bed in '" small co.~y hot.el on t.he b<tnk of the 
Thame~. Next morning 1 was taken to Heathrow by car tltroug;h Robin Hoodian fore~ts. 
This was the end of my fnscinnting trip to Britain in the merry month of Mny. 

I atn n<ry grateful to the CCP5 project: and to Bill Sm.ith who organised my un

forgettable joLtrney, to J Goodfellow, .J S Rawlinson, D White, J Finney and all their 
collertgues for their hospitality and patience. I am also grateful to Dr [( Heinzinger and 
to Max-Planck-Institnt l"iir Chemie in lviainz where I currently have the opportunity 
to work quietly. In the bustling life of l\"Ioscow [ could not have f()tl!td the time and 
inspiration to write this story. 
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An Appreciation of Allan Grivtsov (19:37-1991.) 

G. Malenkov, 
Institute of Physical Chemistry, 

Academy of Sciences of the USSR, 
Leninsky Prospect, :H 

Moscow 117015, 
USSR 

June 5, UJ01 

Allan Gri~·tsov died on t-he Uth January !991. Bom on April the l5th 19:37 in 
Moscow, he WitS one of the pioneers and enthusiast-s of nwlecular dynamics ~imulation. 
Allan was a student of the Chair of Biophysics he~tded by Professor L :\ Bllunenfeld 
when the ideit of molecular rlynamics simulation came to him. At thi\t. time he did not 
know th<l.t this me thud had nlready been used by ot.her scient:ist:s. He appronched S 8 
Shno\, lect.nrer in biochemistry, n very broad-minded scientist <wcl a man of deep under
standing of the problem~ of natural sciences (it was he who proposed to his student AM 
Zhabotinsky to study Belousov's reaction) for advice. S E Shnol said his brot-her, E E 
Shnol, a mat.henw.tician, got intere$ted in the problem. The first of A Crivt.sov's wol'ks 
on molecular dynamics simulation is an unpub!i~hecl report (:37 type-written pages), 
writt.en by him in collaborat-ion wit.h E E Shnol in 1067. Its title was "On the numerical 
modelling of the molecular motion in a hquid", A Crivt$011 ~til.rt-ecl to propagandize the 
met:hod. !r<: spoke at various scientific conferences (some of his remarks wen; published 
in the discussion sec t.ions of the conferences' procr::edings) trying to s t i nndate the intere~t 
or t.he specialists in various fields. After the discussion at. the conference on t.he theory 
of adsorbt.ion he became a scientific worker of the Institute of Physiwl C:hem.istry. He 
performec.l, as far as I know, the first works on simulation of st.ruduralisatwn or liquid 
near the solid wall and of a.dsorbtlon. He was one of the first who used molecular dynam
ics ~imulation to stLtdy motions in a polymer chain. His candidate (Ph.D. equi1'alent) 
thesi~, written in 1973 was entitled "Numerical experiments on modelling motions r.Jf the 
molecules". Suon, just after publication of Rahman and Stillinger's work he elaborated 
ctn original, very efficient algorithm for sinudC'Ition of rigid mttltiatomic molecules and 
wrote <~ progrmmne to simulate water. 

A C ri vtsov simulated dislocations in crystals, the deformation of a molec nlar cryst a!, 
dynamics of t.he polymer crysr.al, ~tudied influence ot' impurity on the strength of a 
crystal and performed many other excellent pioneering works. He delivered lectures, 
organised seminars, workshops and schools. Due to t.his activity computer simuhdion 
became rather popttlar in the USSR. I would like to mention four workshops on the 
application of nw.themat.ical methods to study of polymers. At these workshops, which 
took place in Pushchino (et scientific centre to the South from t'vioscow), the efforts of 
mathematicians, t.heoreticians. molecular biologists and polymer scient.ists were united. 
Fur several yems he hecHt~~d a vety prestigiotts s<,:mirmr on the computer simulation of 
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polymers and condensed nntter at lvioscow Universit.y. It is impos.~ible to enumerate all 

the scientific events in organisation of which A Grivt.sov took part. 
A Crivt~ov had many disciples. He taught them to be strict in formuli!.tion of the 

tasks and the methods chosen to fulfil them. He thought. a lot about fundamental prin
ciples of computer simulation ;l.tlcl his contribution to thei1 development was invaluahle. 

His favourite creation was his grrmp in the Institute of Physical Chem.istry. By 

and by after hard efrort.s and struggle it turned into the Laboratory of Mathematical 
!V!oclelling of the physico-chemical proce%es, He passed away when he was .'):3 years old. 

A list of A Crivtsov's pllblications comprises more than 70 items. For the most JHi.rt 
they are <1.bstracts, short conununications <1.nd preprints, almost all in Rus.5ian. This 

brilliant scif'ntist knew foreign langunges rather poorly. Best. of all he could re<1.d and 
.'i[)(~ak in Esperanto, bnt few scientists <l.re liuent in this artifi.ciallanguage and t.here is 

practically no scientific literature in it. It is one of the re.:tsons why he is not as well 
known in the world as he deserves to be. The uw.in reason was his modes~y and the 
difliculty or travelling abroad for a real scientist. during the years when he was in his 
prune. 

List of main publications of Allan Grivt.sov 

t. On the structnraliz<1tion of liquid near the solid surf<1.ce. Doklacly i\kaclem.ii 
Nauk SSSR v.lDO, N4, p.868, 1970 

2. Numeric<!.! mode !ling of the deformation of the molecnlar crystal. Ibid., v .215, 
Nl, p.l'tS-151, 107<1 (with V S Yushchenko and ED Shchukin) 

:3. Numerical modelling of the motion of a linear polymer ch<tin. Ibid., v.2:20, 
N5, p.109G-l098,1975 (with N K Bal<tbayev and E 8 Shnol) 

'L On the analysis of the mechanism of the adsorb tiona! decrease of the strength. 
"Fizico"khimicheskaya mekhanika materialov" N 1, p.:31, l9T6 (with V S Yu~h
-chenko) 

.'). Stability .wd dynamics of a drop on the solid state surface. "Kolloidnyi 
Zhurnal",v.:39, N2, p.3:~5-:~:38, 1977 (with V S Yushchenko and ED Shchnkin) 

(). Heterogeneous crystallization (Kinetics <tnd computer simulation). A book 
(with D Fedoseev and P Chuzhko) Moscow, Nauka, 1978 (A Grivtsov wrQte 
a chapter about molecular dynam.ics simulation- one of the best manuals in 

the world) 

7. Geometrical sense of the temperature of the ergodic sptem. Zhurn. Fizich
eskoi Khim.ii, v.54, N l, p.250, 1980 

8. 1v[olecular dynamics study of the distnbut.ion of the kinetic energy in the 

polyethylene molecule. VysokomolP.culyarnye soyeclinen.iya, \'.23b, p.l2l-l:23, 
l981 (wit-h N K Balabnyev) 

0. Numerical modelling of rotational crystalline states of the n-parafin Doklady 

Akaclemii Nauk, v.22T, N2, p.-112-415, l98'~ (with M A !>;fazo, N IC Bab.l><tyev 
et. al) 

lO. Diffusion of the molecules in narrow pores Kolloidnyi Zhurnal, ~-.5, p%9, 
[!)82 (wit-h. L i\ Grivtsova, NV Churaev, L F Chuikova) 

ll. Numerical modelling of protein molecular dynamics. Molekulyarnaya Bi
oto~iya, v.l7,~·:3.p.537-13Ui,U)8;l (with G G ).Ialenkov and LV Ahiltuwv) 

44 



12. Mathematical modelling of the adsoc-btionol pmces5e.s [n, Adsorhtsiya i ad
sorbenty, Moscow, N<tuka, 1987, p.Sl-87 

n. Geometrical criterion of the hydrogen bond in computer simul11.~ccl water. 
Zh.Strukturnoi Khim.ii, v.28, N2, p.Sl-85, 1987 (with G C \Ialenkov <tnd l'v[ 
M £"rank- Kamenelskii) 

14-. lv[olec uhr dyn(l.mlcs simulv.tion of the vitrification of t W(Hli mens ional Lennard
.Jones fluid. R<:<.<;p\;:tvy, v.l, N6, p. LOl-106, 1089 (with !V[ [ Kotely<tnsky and 
M A M<tzo) 

All these publicatiOn:> are in Russian. English translations of t.he most part ofjournals 
<tre ;w<liln.ble. 

flelow I give the f11lllist of A Grivtsov's publications in En!:jlish, including abstr(l.ct.~: 

L. /v[echanical behaviour ot' solid polymer - imitation by molecular dynamics 
method In: lvloleculM ;\[ability in Polymer Systems. P.:3:36. Leipzig, 1981 
(with N K Balabaev et al) 

:2. (V[olecular dynamics simulation of motion in solid pol_ymers rotation phase of 
rHl.ikane. Polymer Bull. v.l2, N'l, p.:30:3-:J00, 1!;18,1 (with M A Mazo, E F 
Oleynit: et a!) 

:3. Molecular dynamic~ simulation o!" the n-albncs rot at or phas2 In: Physical op
tics of dynanUc phenomena and processes in nutcromolecular systems. p.41:3-
4:25, Berlin, 1985 (with M A Mazo, E F Oleynic et al) 

4. I'v[o!ecular dynamics simulation of water: aJsorbtron of water on -tridim..ite 
J. ColLI nterf<tce Sci., v.l2Q, N2, p.:397-407, 1988 (with L T Zhuravlev, C A 

Gerasimova and L G Khazin) 

5. Molecular dynamics simulat10n of liquids contacting the solid surfaces. Sym
posium on the structure of liquids nnd solutions A11gnst 24-:27. Vesprem. 
Abstracts p.:H-39, 1987 

6. On the thennodyncunically correct molecul-0\r dyn<1.m.ic.5 simulation of water. 
lnt.ernatwnal conference on solution chem..istry . .Jerusnlem August p.l0:2, 1989 
(with M lvi Frank-Kamenet.skii and D L Tytik) 

45 



Efficient calculation of the pressure in the canonical ensemble 

for inverse power central force models 

Mihaly Mezei 

Department of Chemistry and 
Center for Study in Gene Structure and Function, 

Hunter College and the Graduate Center of the CUNY, 
Ne\v York, NY 10021, USA. 

The pressure in the canonical ensemble is obtained as a 

function of the virial sum vl: 

with 

P ~ kT (N - V/3kT)/V 

N 

v = ~ (~ij · ~i 8 ij) 
i<j 

( 1) 

( 2) 

where k is the Boltzmann factor, T is the absolute temperature, N 

is the number of particles in the system, V is the volume, Kij is 

the interparticle vector and eij is the energy of interaction 

between particles i and j. In general, calculation of the virial 

sum requires the calculation of the forces on the particles, a 

non-negligible amount of extra work (unless the force-biased 

displacement scherne2 is used where the forces are also needed 

anyHay) and is thus rarely done. However, if eij depends only on 

fKij f (i.e. there is only one interaction center per particle) 

and the interaction follows an inverse power law (or is a sum of 

inverse power terms) the contribution of particles i and j to the 

virial sum can be obtained with negligible extra work, since 
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simple application of the chain rule shows that 

(K·~ (1/IKilnl ~- n/IKin ( 3) 

Thus the calculation of the virial sum in this case require only 

the separate accumulation of the contributions to the total 

energy from the various distance powers during the simulation and 

their multiplication with the corresponding exponent n after the 

simulation. 
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Determining nearest image in non-orthogonal periodic systems. 

Mihaly Mezei 

Department of Chemistry and 
Center for Study in Gene Structure and Function, 

Hunter College and the Graduate Center of the CUNY, 
New York, NY 10021, USA. 

The simulation of crystalline systems where the crystal axes 

are non-orthogonal, raises the question of finding the nearest 

image of a particle. Smith has recently showed (1] that if a 

suitably chosen spherical cutoff is imposed on the interactions 

then the nearest 1mage can be conveniently determined 1n the non-

orthogonal system defined by the crystal axes and then simply 

transformed back to the orthogonal laboratory frame. The purpose 

of this note is to describe a relatively simple procedure to find 

the nearest image without the impos1tion of the spherical cutoff, 

Assume that the columns of the matrix H contain the vectors 

spanning (in the orthogonal system) the unit cell corresponding to 

the nonorthogonal system. The coordinates of a point in the 

orthogonal system, K' are given as 

( 1 ) 
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where g gives the fractional coordinates of the same point in the 

non-orthogonal system ( : s : < 1 for paints inside the cell). Assume 
k -

that a particle is in the center of the cell that is also the 

center of the coordinate system. A point ~ is to be examined if 

it possesses an Image that might be nearer to the cent~r. The 

various images of ~ can be described as 

d 

H" +>cH -- k -k 
1<=1 

I 2 I 

where d is the dimension of the space (e.g. three for crystals) 

and is either -1, 

described by £ is 

2 :;:;.: 

2 
+ > c H : - k>t 

k= 1 .. 

d -+ ) c 
- k 

k,l=1 

0 or 1. Thus the distance of 

cl 
2 2_ ck I t!k. I H") ) = 

k=1 

d 
+ 2 ) c 

k;:-1 k 

an image 

I 3) 

I ·I I 

Here H.2k stands for the k-th column of the square of the matrix 

H. As described in [ 1 J ' simple translations along the non-

orthogonal axes can ensure that the point ~ will be inside the 

unit cell and if its distance from the center (the first term in 

I 3 ) and (4)) is less than the smallest half-width of the unit 
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cell then it will be the nearest image. For larger distances, 

however, images outside the simulation cell may lie closer to the 

cell center. In this case, more work is needed to obtain the 

values of~ that minimize {4). 

The first term is independent of g and therefore will not 

affect the minimum. The second term depends only on ~ and the 

cell axes and therefore it can be calculated once at the 

_beginning of the calculations for all 3d poss1ble g_. The last 

term contains d different coefficients that depend on ~ - these 

have to be calculated each time. The number of possibilites to be 

examined can be further reduced from 3d to Zd by recognizing that 

for each direction k,ck can be only 0 or -SIGN(sk) since ~ is 

already assumed to be translated inside the cell. We are thus 

left with comparing 2d values of the type 

where 

S(~} + (g.l2_) 

2 
Bk=21~-H k). As half of the c~>to be considered is 

(5} can be evaluated rather fast for the Zd cases. 

( 5) 

zero, 

Once the value of ck minimizing (4) is obtained, the nearest 

image can be simply obtained as 

I 6 ) 

The second term can again be prepared at the beginning of the 

calculation for all 3d possible ~· 

So 
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ABSTRACTS 

A Survey of Molecular Dynamics and Monte Carlo Applications of the CM-2 Connection Machine 
Computer 

by 

Bruce M. Boghosian 
Thinking Machine Corporation 

245 First Street 
Cambridge MA. U.SA. 

This talk will survey the applications of the CM-2 Connection Machine Computer in the fields of molecular 
dynamics (MD) and Monte Carlo (MC) simulations. The survey will begin with fixed interaction topology MD 
codes, such as those used to study macromolecular dynamics and dislocation dynamics in crystalline lattices. 
Next, it will cover MD with general long-range forces, and describe an algorithm that maps this problem to the 
CM-2's hypercubic communications network in a way that makes full usc of the network's maximum theoretical 
bandwidth. Next, it will describe "fluid" MD codes for the CM in which the forces are short range so that the 
full N·body problem is wasteful, but where the interaction topology is dynamic. Finally, Monte Carlo work on 
the CM will be discussed, including a Quantum Monte Carlo code for the study of the ground·state properties 
of the hydrogen molecule without making use of the Born·Oppenheimer approximation in the treatment of the 
nuclei. 

Simulations of Disordering In Adsorbed Multilayers Using a DAl' 

by 

R.M. Lyndcn·Bell and H. Xu, 
University Chemical Laboratory, Lensfield Road, 

Cambridge CB2 lEW, U.K. 

The distributed array computer (DAP) is well. suited for simulations of a few layers of adsorbed molecules on 
the solid substrate. Each layer can be represented by either a DAP vector (64 molecules) or a DAP matrix 
(4096 molecules). In the low temperature solid phases where molecules retain their relative positions, there are 
no problems in evaluating forces and moving molecules in a standard molecular dynamics simulation. At higher 
temperatures the molecules begin to disorder and to move. This process starts at the surface and occurs layer 
by layer. In order to evaluate the forces efficiently, the molecules must be resorted into cells from time to time. 
Logical masks are useful for dealing with partially filled layers. 

We have been particularly concerned with molecular motion. Use of logical masks in the smaller simulations 
allows us to track those molecules which do not change layers so that the intra·layer diffusion constants may be 
evaluated. 

Results will be presented for simple multilayers, stepped surfaces and freezing together of two approaching 
surfaces. 
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Pearls and Perils of Parallel Processing 

by 

Allan R. Larrabee, Boeing Corporation. 

Some characteristics of parallel code generation and factors which affect the programmer's acceptance of parallel 
programming tools are brieOy discussed. Included arc hardware considerations, language overlays, analysis tools, 
debug and correctness problems, standards and portability. Tools mentioned include STRAND, Linda, The 
Force, Schedule, GMAT, and KAP. The trade-off between time spent in code development (and "dusty deck" 
Fortran conversions) and the speedup that may be gained is considered from the parallel programmer's point 
of view as well as a comparison of the speedups due to hardware improvements, better algorithms, and 
paraUclism. Some comparisons between the use of global memory versus local memory and between Fortran 
and the C language are made. Parallel processing via distributed hardwares communicating over networks is 
only briefly mentioned. Presented also are some predictions of the future developments that may and others 
that may not occur in this relatively new area of computer science. 

Multicomputer Molecular Dynamics 

by 

David Fincham 
University of Keele, Staffordshire, ST5 5BG, U.K. 

and 
SERC Daresbury Laboratory 

This talk ...AU first briefly review the well-established algorithms for multicomputer molecular dynamics, namely 
the circulating data, replicated data and spatial decomposition methods, Experience using Occam and Fortran 
on Transputers will be described. The incorporation of neighbour lists in the circulating data method will also 
be mentioned. 

The problem of long-range forces will be studied. The effective-pair-potential approximations of Adams 
parallelise simply, but are not very efficient for ionic systems. Although a straight-forward implementation of 
the Ewald sum involves a communication overhead, this is tb.e most practicable method for tYPical problems 
involving ionic materials. For large ionic systems the particle-particle/particle-mesb approach is used. 

Three· and four-body forces can be implemented '.Vi.thin the circulating data methods in a number of ways, and 
these will be analysed and compared. For polymers it is possible to ensure that such forces only involve pairs 
of groups. Otherwise the many-body list can be assigned to particular processors, or distributed over all 
processors. If it is necessary to locate interacting triples, as in a molecular fluid, this can be done by a triple 
circulation, or by construction from a pair list. 

Finally the work of the Palermo group on dynamic load-balancing for inhomogeneous systems will be reviewed. 
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Supercomputers, Molecular Dynamics and Hydrodynamics 

by 

D.C. Rapaport, Physics Department, 
Bar-Ilan University. 

Algorithms designed for large-scale molecular dynamics simulation on vector and parallel computers arc 
introduced, and the results obtained when these methods are applied to the modeling of fluid flow at the 
microscopic level are described. The molecular dynamics approach has been used to reproduce the familiar 
hydrodynamic effects of vortex formation in obstructed flow and convective roll development in a 
Raylcigh-B'enard cell; although the studies carried out so far involved between 20 and 270 thousand particles 
(depending on the problem), considerably larger systems will be needed for more detailed exploration in the 
future. In order to Jay the foundation for work of this kind, feasibility studies addressing multi-million particle 
systems have been carried out on computers such as the Cray YMP and a 64-node Intel iPSC/2, using 
computational methods developed specif1cally for the vector and distributed processing environments. 

Systolic Loop Methods for Molecular Dynamics Simulation Generalised for Macromolecules 

by 

A.R.C. Raine 
Cambridge Centre for Molecular Recognition, 

Department of Biochemistry, 
Tennis Court Road, 

Cambridge, 
CB21QW. 

A generalisation of the efficient systolic loop methods of Raine, Fincham and Smith, for the molecular dynamics 
simulation of liquids is presented, which allows the simulation of complex macromolecules such as proteins. 
Simple rules for the division of the work are described which allow the three-and four-body interactions necessary 
to represent covalent bonds to be evaluated without departing from the original systolic loop scheme. 
Additionally, a method for parallelising the SHAKE algorithm for constraining bond- lengths is described, The 
implementation of a molecular dynamics program, which runs on a Meiko Computing Surface; and which uses 
these ideas is also described. Performance tigures are given which demonstrate that the generalised molecular 
dynamics program retains the efficiency and scaling behaviour of the original method. 
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Biomolecular Energy Calculations using a Transputer array 

by 

Julia M. Goodfellow and D.M. Jones 
Department of Crystallography 

Birbcck College 
Malct Street, London 

We have been using a Meiko Computing Surface and the Edinburgh Concurrent Supercomputer Centre to study 
the interactions of biomolecules. In our first application we have written and used a parallel versions of an 
energy minimization program \!Sed to analyse ligand protein interactions, Secondly, we have attempted a much 
harder project in which we are partially parallclising a Monte Carlo code which is u.:.ed to calculate free energy 
differences on mutating one amino acid to another as in a protein engineering experiment. We are currently 
comparing this parallel code with results obtained from running several independent simulations with no 
communication between processors. 

Refinement of Protein Structures Using Restrained Molecular Dynamics 

by 

Garry Taylor 
Department of Biochemistry, University of Bath, 

Claverton Down, Bath, BA2 7AY. 

The use of 'simulated annealing' in the refinement of atomic structures of macromolecules from X-ray or two 
dimensional NMR data will be discussed. The method has been implemented in two computer packages: 
XPLOR, from Prof. Brunger at Yale, and GROMOS, from Prof. van Gunsteren at Groningen. The method 
has allowed convergence either more quickly, or from a cruder starting model, and is proving a useful tool 
particularly in molecular replacement studies, where the unknown crystal structure is structurally related to a 
known protein structure. Previous refinement procedures required iterative cycles of least squm:es refinement, 
with a relatively small radius of convergence, and periods of manual rebuilding of the model using computer 
graphics: this procedure would take several weeks. Although simulated annealing is more costly in computing 
requirements, access to fast processors has allowed reasonable run times. All the examples discussed in tb.e talk 
were carried out on a Convex C210 processor at the Oxford Centre for Molecular Sciences, which was ideally 
suited for the large problems tackled using the method. The high memory bandwidth, fast scalar and vector 
processing allowed refinement of, in the largest case, foot and mouth disease virus with 8000 atoms and 135,000 
x-ray observations in 8 days - a task which on a microvax II would have taken 1.5 years! 
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Vcctorization or Algorithms ror Monte Carlo 
Simulntlons in Lattice Models 

by 

D.P. Landau 
Centre for Simulational Physics, 

The University of Georgia, 
Athens, GA 30602, USA. 

The study of phase transitions and critical phenomena in lattice models of condensed phases using Monte Carlo 
methods is computationally quite demanding. For systems Mth only ncar-neighbor interactions, the sampling 
of the lattice can be organized so that it is fully vectorizable. This is accomplished by subdividing the lattice 
into sublattices containing non interacting sites each of which can then be treated as a single vector, For simple 
Ising-lattice gas models, multiple sites can be packed into each word and the combination of multisite coding 
and vectorization can increase the speed of the calculation by up to two orders of magnitude on the CYBER 205 
(or ETAlO) supercomputers. Some of the progress which has been made using this approach to study static 
and dynamic critical phenomena in systems with up to 2xl07 sites will be reviewed. 

Parallelism in Computational Chemistry I. Hypercube-connected Multicomputers 

by 

M.P. Guest and P. Sherwood, 
S.E.R.C. Daresbury Laboratory, 

Daresbury, Warrington, WA4 4AD, U.K. 
and 

J.H.van Lenthe, 
State University of Utrecht, 

Transitorium III, Padua\aan 8, 
Utrecht-De Uithof, 
The Netherlands, 

An account is given of experience gained in implementing computational chemistry application software, including 
quantum chemistry and macromolecular refinement codes, on distributed memory parallel processors. In 
quantum chemistry we consider the coarse-grained implementation of Gaussian integral and derivative integral 
evaluation, the direct-SCF computation of an uncorrelated wavefunction, the 4-index transformation of 
two-electron integrals and the direct-CI calculation of correlated wavefunctions. In the refinement of 
macromolecular conformations, we describe domain decomposition techniques used in implementing general 
purpose molecular mechanics, molecular dynamics and free energy perturbation calculations. 

Attention is focussed on performance figures obtained on the Intel iPSC/2 and iPSC/860 hypercubes. The 
present performance is compared with that obtained on a Convex C- 220 minisupercomputer, and from this data 
we deduce the cost effectiveness of parallel processors in the field of computational chemistry. 
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Simulation of Brownian Dynamics: 
A Problem Apparently Difficult to Parnllelise 

by 

E.R. Smith 
Department of Mathematics, 

La Trobe University, 
Bundoora, Vic. 3083, 

Australia. 

We consider a system of N particles interacting with a pair potential ¢(r) in periodic boundary conditions with 
a simple cubic cell of side L. The particles have hard cores of radius a and execute Brownian motion in a 
suspending fluid of viscosity r,. The fluid obeys periodic boundary conditions and a stick boundary condition 
on the surfaces of the spheres. The stochastic equations of motion are solved with a first order solver and 
includes a random force term chosen with covariance matrix proportional to the mobility matrix p.(tj7J· If the 
net force and torque on particle j are~ and ~·, then these are related to the velocity J.j and angular velocity q 
by the relation 

Problems which arise are: 
(i)how to interpret periodic boundary conditions for hydrodynamics; 
(ii)how to approximate lhe mobility matrix in periodic boundary conditions; 
(iii) how to ensure that the approximate mobility matrix used is positive definite; 
(iv)how to implement a simulation in a reasonable time; 
(v)developmcnt of parallel algorithms to implement Brownian dynamics. 

(i)Wc describe the physical basis of self-consistent interpretation of periodic boundary conditions and how to 
extract quantities like zero frequency viscosity from them. 

(ii)In free boundary conditions, two approaches to approximating the mobility matrix have been used: 
(a)To expand p(r1rJ in powers of [a/lj:*]. 
(b)To expand p(ri rJ using a spherical harmonic expansion to a finite value t,.,. of the angular momentum index 
t. These are briefly described, with extensions to periodic boundary conditions. 

(iii) We first derive an inverse friction matrix T which connects expansion coefficients for fluid velocity at a 
particle surface to expansion coefficients for the induced force density on the particle surfaces. We prove that 
this when this T matrix is calculated using a finite spherical harmonic expansion with :tstst,_,., the T matrix is 
positive definite for all values of t""'.21. We then construct p. as a partial inverse of this T and prove that these 
approximate mobility matrices are positive definite for all t=,· The construction and proof are valid in both 
free and periodic hydrodynamic boundary conditions. Further, in free boundary conditions, explicit calculation 
shows that for t,_= 1, the spherical harmonic expansion is not equal to the inverse power expansion to any 
particular power of [a/l'i,kiJ. 

(iv)We note that serial computation times for the elements of the spherical harmonic expansion ofT arc O(N1K/) 
in periodic boundary conditions, where Ko is the magnitude of the largest wave vector used in the Fourier part 
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of the Ewald fonn for the mobility matrix. Serial times for the inverse power series are O(NT') if terms up to 
[a/l'i. * IJP are used. The Choleski decomposition of the T matrix, necessary to construct p in the spherical 
harmonic expansion takes computation times which are O(N'), but with a much smaller constant than those in 
the computation of the elements ofT. Whichever form of the mobility matrix is used in a Brownian Dynamics 
simulation, a further Choleski decomposition of J.& is needed, and that takes computation times which are O(NJ). 

(v)The processes involved in calculating the original T matrix from which we derive p. 

and may be calculated on array computers with algorithms whose computation times are predominantly 
concerned with on chip computation rather than data transfer, However, the Choleski decompositions ofT and 
jj are matrix manipulation procedures whose computation times appear to depend an massive data transfers, 
which may well take more time than the actual computation. Some of the problems of producing parallel 
algorithms for these processes are discussed. 

Dedicated Parallel Computers for Molecular Dynamics Simulations 

by 

A.F. Bakker 
DeU't University of Technology, 

Applied Physics, 

Although supercomputers have opened ways to perform large-scale computer experiments, only a small group 
of physicists and chemists use them as a standard facility due to their costs and availability. 

As a low-cost alternative, special purpose computers have proven to be very efficient: supercomputing power 
a[ minicomputer costs. For example, The Delft Molecular Dynamics Processor (1982) has a speed comparable 
to the CRAY-1 for molecular dynamics (MD) calculations, yet it's costs were only 100 kf. It's parallel and 
pipelined architecture is partly hard-wired (force calculation pipe) and the algorithm is micro- coded. Other 
new parallel MD machines have been developed and built at IBM (San Jose) using a Fortran optimized basic 
instruction set for MD calculations (Spark), and at AT&T Bel laboratories (Murray Hill) optimized for 
three-body-interactions MD calculations (ATOMS). 

At Delft a new MD processor (25 GigaFLOPS), is now under construction, and will be a multi-purpose, C and 
FORTRAN programmable parallel computer. It's architecture, that will be discussed, is tailored to "local 
environment problems~, such as found in MD calculations, and is based on the "linear processor array" concept. 
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GROMACS: A Hybrid Architecture for Molecular Dynamics 

by 

Herman J.C. Berendsen, 
Laboratory of Physical Chemistry, University of Groningen, Nijenborgh 16, 9747 AG GRONINGEN, The 

Netherlands. 

Molecular Dynamics simulations of complex molecular systems as hydrated biological macromolecules involve 
a range of atomic interactions of varying complexity. Non- bonded interactions between atom pairs are relatively 
simple but involve 100-300 N interactions where N is the number of particles in the simulation. They also 
involve parameters depending on pairs of atom types. Bonded interactions include 3- and 4- body interactions, 
which arc considerably more complex but involve only 1-2 N interactions. The updating of velocities and forces 
and further data analysis also is an order-N process, but one in which. programmable flexibility is required. 

The MD process can be functionally subdivided into three processes of different characteristics: 

I. Neighbour searching: produces list pairs of particles within a prescribed range. Characteristics: low-accuracy 
integer operation based on particle coordinates. 

II.Non-bonded interactions: produces forces on particles based on pair list. Functional form of forces must be 
flexible and includes parameters depending on particle types. Characteristics: 32 bit floating point operations, 
fixed algorithm if tabulated functions are used very high speed required. 

III.Bonded interactions and update: produces bonded forces, updates velocities and coordinates, selected data 
analysis. Characteristics: flexibility required, variety of algorithms, operations based on particle number, 
dominantly floating point operations. 

We are designing a special-purpose hybrid MD machine, called GROMACS (Groningen Machine for Chemical 
Simulation), which consists of three functional parts for the functional processes I, II, III, all commmticating 
through stand<:~rd transputer links. I is a special network of 200 T212/414 transputers; II is a pipelined unit 
based on floating point ALU's; III is a general purpose network with about 100 T800 transputers. GROMACS 
is designed to handle simulations according to the program package GROMOS. 

This is a joint project of the Department of Computer Science (E.J. Dijkstra, H. Bekker, S. Achterop, W. 
Halang) and the Laboratory of Physical Chemistry (W.F. van Gunsteren, HJ.C. Berendsen) of the University 
of Groningen, supported by th.c Foundation for Applied Research. (STW) of the Netherlands Research 
Organisation (NWO). 
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Classical & Quantum Simulations or Novel Condenscd~Matter Systems 

by 

Farid F. Abraham, 
IBM Almaden Research Centre, San Jose, CA. 

We will describe some recent investigations of the statistical mechanics of novel materials systems using classical 
and quantum simulation methods. Examples may include studies of the phases of quasi two-dimensional 
physisorbed films on graphite, the structure and dynamics of solid membranes, the interpretation of puzzling 
images of the graphite surface using the Atomic Force Microscope (AFM), and the melting of the Abdkosov 
flux solid in high-Tc superconductors. For the rare·gas films, we will feature the microstructure of the 
incommensurate phases of classical krypton and quantum helium simulated by molecular dynamics and path 
integral Monte Carlo and show that the reentrant fluid is a domain-wall liquid with a hexagonal pattern for 
krypton and a striped pattern for helium. The solid membrane is a natural two-dimensional generalization of 
the linear polymer, and theory suggests that a compact structure occurs for this two- dimensional random surface 
moving in three dimensional space. We will describe molecular dynamics simulations of the self-avoiding 
"tethered" membranes and show that, in contrast to previous belief, this membrane does not crumple but remains 
in a "flat" state. Using the AFM to investigate the graphite surface structure, the experimental issue has been 
the large variety of measured images. A classic example is the puzzle that only "every-other-atom" may be seen, 
We have developed an empirical graphite potential and have calculated the image resulting from a graphite flake 

passing over the graphite surface at an arbitrary angle. Our generated images mimic the experimental pictures 
of many groups. Finally, we present Monte Carlo simulations of the intermediate flux state accessible in high-Tc 
superconductors where the Abrikosov flux lattice is melted over a significant portion of the (H,T) phase diagram 
and where an entangled flux liquid may exist. 

Multiprocessor Chemistry 

by 

Kent R. Wilson 
Department of Chemistry, 

B-·039 University of California, 
San Diego La Jolla, 

CA 92093, USA. 

Our experience will be described in using a four processor MIMD Silicon Graphics system on three types of 
problems of interest to chemists. First, a test of density functional quantum mechanics as run using a Fortran 
compiler which. automatically partitions the job across processors. Second, the computation of molecular 
dynamics of chemical reactions in solution. Here the problem partitions naturally across processors, since 
ensemble averages of sets of independent trajectories arc needed. Third, "presentation quality" molecular 
graphics for filming the molecular dynamics of chemical processes, in which an algorithm is implemented which 
dynamically repartitions the jobs among processors, automatically adjusting for frame to frame changes in the 
image as well as for the shifting demands of other job sharing the same processors. A stereo film will be shown 
illustrating the results of both multiprocessor dynamics and graphics. 
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Simulations in Non-Spacefilling Geometries: Molecular Dynamics of the Rhinovirus 

by 

B.M. Pettitt 
Department of Chemist1y, 

University of Houston, 
Houston, TX 77004 

Virus particles have over a half million coat atoms and while that would seem to limit the applicability of 
computer simulations they also posses icosahedral symmetry. There are 60 asymmetric units of roughly 
triangular shape made up of 4 proteins that form the viral protein coat. Each of the asymmetric units contains 
over 7000 heavy atoms. Using the point group symmetry as a boundary condition, computer simulations of the 
minimum energy structure and equations of motion have been performed for an entire virion. In such a 
simulation cell linear momentum is no longer a constant of the equations of motion. Several other aspects of 
such non-spacefil!ing geometries such as the occurrence of antiperiodic boundaries will be discussed. 

The cold virus is a member of the picornavirus family. This group of viruses consists of a spherical protein coat 
filled with RNA and solvent The picornavirus assembly is roughly 300 Ain diameter. Antiviral compounds 
of the oxazole (isoxazolc-heptane-phcnoxy- oxazole) have been developed by the Sterling Winthrop Research 
Institute. These have been shown to have biological activity against the picornavirus family, of which cold 
viruses arc members. Results will be presented for the dynamics of a single asymmetric unit with free 
boundaries and with icosahedral boundaries. The motions with and without an antiviral drug will be compared 
and contrasted. Particular mechanisms of drug action may be related to specific molecular details of the bound 
ligand. 
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CCP.S Workshop Report: Solid State Ionics, Daresbury 
Laboratory 7 November 1991 

Compiled by W. Smith 

10 November 1991 

The meeting began with a talk by Dr. D.M. Heyes of Guildford University on the 
subject of computer simulation of barium sulphate (Barite). The work was the basis of 
a collaboration with M.P. Dexter (a summer student) and BP (Sunbury-on-Thames). 
Dr. Heyes described preliminary results of molecular dynamics computer simulations 
of crystalline barium sulphate at room temperature. Surprisingly little is known about 
the physical properties of this common materiaL Dr. Heyes began by describing how a 
suitable potential model was obtained, which was adequate for calculating the Madehmg 
constant and the lattice parameters. He also described the work undertaken to imple
ment a suitable MD program capable of handling the complexities of the unit cell and 
exploiting the Fincham implicit algorithm for the rotational motion of the sulphate ions 
with quaterniom. Preliminary results were given~ including internal energy, (for which 
exceptional agreement with experiment was obtained) and pair radial distribution func
tions. Dr. Heyes concluded with some practical queries, such as the verification of the 
rotational equations of motion~ the thermostatting of the system and the significance 
of the Fourier contribution in the Ewald sununation for calculating the electrostatic 
potential. 

Mr. P.J .D. Lin dan of the University of Keele presented the results of molecular dy
namics calculations of the thermal conductivity of the ionic solids calcium fluoride and 
uranium dioxide. The work, which was a collaboration with Prof. M.J. Gillan at Keele~ 
was motivated by the need to understand the anomalous temperature dependence of 
the thermal conductivity of uranium dioxide at high temperatures. The calculations~ 
which were based on the Green-Kubo technique, yielded good agreement with exper
iment for calcium fluoride. For uranium dioxide, very close agreement was found for 
temperatures below 2000 K~ but a large discrepancy existed above this. It was shown 
that the discrepancy arose from the effect of electronic excitations. Mr. Lindan went on 
to discuss two methods of performing molecular dynamics simulations using the shell 
model. The first was conjugate gradient minimisation of the shell configurational energy 
at each time step~ and the second~ the use of fictitious adiabatic dynamics to generate 
shell trajectories. Both these methods. achieve the aim of keeping the s.ys.tem on the 
Born-Oppenheimer surface during the simulation. 

Prof. N. Greaves of Daresbury Laboratory provided a summary of the current un· 
derstandlng of ionic transport in silicate glasses. This proved to be a multidisciplinary 
talk, with contributions. from experimentalists~ theorists. and simulators. Experimentally 
ionic transport (of ions such as Cs+, Rb+ etc.) shows Arrhenius behaviour and there is 
a remarkable drop in conductivity in glasses where mixtures of ions are present. This is 
the so-called "mixed-alkali~> effect. Prof Greaves described the model currently us.ed to 
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explain these phenomena. In accordance with structural determinations (such as XAFS 
· X ray Absorption Fine Structure) the glass is described by a modified random network 
(MRN) in which the ions congregate and move in "channels" in the glass. The movement 
is via a hopping mechanism which involves the making and breaking of oxygen-metal 
bonds. The activation energy of the ion migration thus involves a binding energy con
tribution from the metal-oxygen bonds and a bond ordering energy arising from the 
redistribution of silicon-oxygen bonds as the ion migrates. A theory by S. Gurma.n was 
used to acconnt for the bond ordering energy terms. Further insight into the phenomena 
of ion migration was provided by MD simulations by Vessal et al. which strongly en
dorsed the basic model. Finally, a simple Monte Carlo model incorporating a "memory 
effect'' designed to mimic long lived distortion of the lattice by the migrating ions was 
shown to possess a pronounced "mixed alkali" effect, thus offering some clue as to the 
origin of the effect in glasses. 

V. Nield of Oxford University described some neutron scattering studies of disor
der in silver halides. Silver bromide possesses a rocksalt structure up to the melting 
point (701K), while silver iodide, which is in the j3 phase at NTP possesses a complex 
phase diagram, including an o: phase (which is fast ion conducting) and a rocksalt low 
temperature phase. Both systems have been examined by neutron diffraction at the In
stitut Laue-Langevin. The reverse Monte Carlo (RMC) method of McGreevy has been 
used to determine the structure underlying the observed neurton diffraction. At 420K, 
the studied temperature, the location of the silver ions in crystalline silver iodide were 
found by RMC to be almost entirely ln the tetrahedral sites. RMC starting structures 
in octahedral, tetrahedral trigonal and liquid like sites within the lattice of anions all 
gave the same result. The occupancy of the tetrahedral sites diminished as temperature 
increased. Work is continuing on the higher temperature data to see how much evidence 
there is for the order-disorder transition previously observed by Raman and Brillouin 
scattering. A bragg peak anomalously observed at 740 K may be related to th.is. The 
structure factor of silver bromide has been measured to within 0.25 K of the melting 
ternpreature. There is considerable diffuse scattering even at room temperature and just 
below melting only two Bragg peaks are observed. Large anharmonic vibrations of sil· 
ver ions arise in the < 111 > direction, which lead to a few percent interstitials in the 
(1/4, 1/4, 1/4) site near the melting point. The pre-melting disorder is thought to be a 
transition to a fast ion conducting phase which is interrupted by melting. 

Dr. P. Madden of the University of Oxford continued the theme of silver halides in 
a talk on the mechanism of the a- {3 phase transition in silver iodide. The springboard 
for this study was the deceptively simple silver iodide potential of Vashista et al., which 
Tallon had shown to give a very accurate description of the phase diagram. Dr. Madden's 
MD simulations employed the same potential, but imposed rigid, cubic periodlc bound
aries on an 864 ion system in the a phase. Within the unit cell of this phase the silver 
ions can in principle reside on a variety of sublattices (six in all), all of which are com
prised of tetrahedral sites. Formally, these sublattices are equivalent, but the occupation 
of any one has inlluence on the occupation of the others. Simulations show that at hlgh 
temperature (900K) the probability of a silver ion being on any sublattice is equivalent. 
However at lower temperature (500K) it becomes apparent that the occupancy of the 
sublattices shows a distinct preference. Fluctuations from uniform occupancy of all sub
lattices are long lived. Furthermore, the simulations show that the diffusion of the silver 
ions at high temperature, becomes arrested at lower temperatures. (Note: the fixed cubic 
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periodic boundary means that the iodine ions retain a body centred cubic lattice at all 
times.) Examination of the low temperature structUI"e with computer graphics shows 
that only four of the six possible sublattices are occupied, but with a kincl of partial 
ordering rentiniscent of the {3 phase. It is Dr. Madden's conjecture that this ordering 
is a true precursor of the (3 phase, the transformation to which is thus signalled in the 
crystal structure from a remarkably long way away in the a phase. 

Dr. W. Smith gave the first of two talks on sodium {3"-alumina. This system has 
been studied intensively by molecular dynamics, in a collaboration with Prof. M.J. 
Gillan of Keele University. The material is a superionic conductor, particularly at high 
temperature, where the socUum ions are responsible for carrying the current. The crys
tal structure is hexagonal and complex, with the sodium ions confined to almost two
dimensional "conduction planes" between spinel blocks (aluminium oxide). The material 
is usually prepared in a nonstoichiometric condition, with vacancies in the conduction 
planes, a fact which is crucial to the conductivity. The hlgh temperature simulations 
(500......,1200 K) clearly showed the diffusion of socUum ions that enables the conductivity. 
At low temperature however ( <500 K) the sodium vacancies become localised into an 
ordered structure called a vacancy superlattice, the structure of which is dependent on 
the vacancy concentration in the conduction planes. Concurrent with the formation of 
the vacancy superlattice is marked reduction in conductivity, leading to a non-Arrhenius 
temperature dependence. The activation energies calculated compared well with experi· 
mental determinations by Engstrom et al. The vacancy superlattice was first postulated 
by Boilot et al. from diffuse x-ray scattering experiments. A recently developed theory 
by Gillan, which owes much to the simulations, is able to account fully for the Boilot 
results. A detailed knowledge of the structure of the superlattice, includ.lng the precise 
structure of the vacancies themselves, proved to be crucial in accounting for the observed 
results. 

Mr. T. Bush of the University of Kent at Canterbury (in collaboration with Dr. 
A. Chadwick) gave the second talk on Sodium {3"-alumina. In thls case the system was 
doped by neodymium ions in the conduction planes. (The facJlity with which the sodium 
content of the material may be exchanged for a variety of optically active ions suggests 
technological applications such as waveguide lasers and novel phosphors.) The impor· 
tant question to be addressed was the structure of the conduction planes, in particular 
the immediate environment of the neodymium ions. The methods used to resolve thls 
question included experimental determinations (XAFS and x-ray powder diffraction on 
the Daresbury Synchrotron) and molecular dynamics simulation. Constant temperature 
and pressure molecular dynamics simulations have been performed on the Nd3+ /Na+ 
,8"-alumina system at a series of temperatures and exchange concentrations, in an effort 
to characterise the ionic behavior of the system. Results of the simulations have been 
compared with the current experimental data, and conclusions can be drawn on the 
structural basis for the optical performance of Nd3+ /N a+ {3" -alumina phases. Addition· 
ally, insight has been obtained into the marked variation of sodium diffusion coeffidents 
at increasing levels of neodymium ion content. 

The final speaker was Dr. X. Zhang of the Royal Institution (in collaboration with 
Prof. C.R.A. Catlow,) who described a molecular dynamics study of oxygen cliffusion in 
the ceramic: YBa2 Cu3 0 6 .91 . The system was studied at high temperature (1400-1800 K) 
using Born model potentials. The diffusion of the oxygen at high temperatul'e was found 
to occur mainly within the Cu(l)-0 basal plane by a vacancy mechanism and the oxygen 
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diffusion coefficient (D::::::3, 7x 10- 1 exp(-0.99e V /kT) cm2s- 1) was in good agreement with 
experimental results. A detailed examination of the diffusion mechanism was lUldertaken, 
with the assistance of molecular graphics techniques. The oxygen vacancies were folUld 
to migrate between the 0(1),0(4) and 0(5) sites, but not to 0(2) and 0(3) sites, while 
thejlimp path' for the diffu,ion were found to be 0(1)·0(5), 0(1)-0(4) and 0(4)-0(5). 
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REPORT ON THE CCPS WORKSHOP 

'BEYOND THE PAIR POTENTIAL' 

KEELE UNIVERSITY, 15-16 APRIL 1991 

The subject of this meeting was the important advances in methods for calculating the 
energetics of condensed matter that have happened in the last few years. These advances 
recognise that for many (perhaps even most) materials, the energy cannot be adequately 
represented in terms of pair potentials, and that one needs an approach that derives the 
energy from the quantum mechanics of the electrons. The talks given at the meeting 
reflected the main strategies that are being pursued to achieve this aim. These include the 
first-principles approach based on density-functional theory and pseudopotentials, the 
Hartree-Fock method, and the more approximate but much simpler methods based on 
tight-binding theory or the CNDO approximation. 

The meeting was organised because the subject was seen to be important and of general 
interest both within CCPS and more widely. The enthusiastic response and the large 
participation fully confirmed this - there were 91 registered participants, many of them 
from overseas. A total of 16 papers and 8 posters were presented during the one-and-a-half 
days of the meeting. The set of abstracts of these papers and posters is produced below. 

Mike Gillan 
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Abstract 

MODELLING 6·8 COORDINATED MG, CA AND 0 

J.A. Stuart and G.D. Price 
Department of Geological Sciences 

University College 
Gower Street 

London WC!E 6BT. 

and 

M.Leslie 
SERC Dares bury Laboratory 

Dares bury 
Warrington. WA4 4AD. 

The programme CRYSTAL, developed by Causa et al. (!)allows us to calculate energies 
and electronic characteristics for crystal structures of modest complexity. The method used 
is the Periodic Boundary Hartree Fock Linear Combination of Atomic Orbitals. As with 
everything in life, this is a compromise: it is less computationally demanding than methods 
such as LAPW, but rather more so than electron gas calculations. 

There are some attractions in a compromise at this level. It is in particular capable of 
examining the properties of crystal structures which are not experimentally accessible. This 
we felt might be a useful tool for the preparation of parameterized potential surfaces, which 
could be sampled systematically, rather than only at those points which could be made to 
exist. As we already had a project under way examining the distortion of MgO and CaO 
using CRYSTAL, we decided to extend this and to attempt to fit the surface generated by 
distorting the unlt cell rhombohedrally from the B! to the B2 structure. This fitting is of 
interest not only because of the geological sigrtificance of the system, but because it involves 
a continuous transition from six~fold to eight-fold coordination of both cation and anion. 

The static electronic energy of MgO in 65 cells was determined, and that of CaO in 58. 
This allowed us to prepare energy surfaces for each. The fitting was done using a 
modification of the programme TIIBFIT by Leslie. Initially a simple pair potential was 
fitted. Work is in progress to improve upon this. 

(!) Pisani, C.; Doves~ R.; Roetti, C., Hartree-Fock Ab Initio Treatment of Crystalline 
Systems. Lecture Notes in Chemistryv 49 (1988) Springer, Heidelberg. 

Dovesi, R.; Pisani, C.; Roetti, C.; Causa, M.; Saunders, V.R. CRYSTAL 88, 
Program No. 577, QCPE, Universit of Indiana, Bloomington, Indiana, U.S.A 
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CALCULATION OF INTERIONIC POTENTIALS IN OXIDES 

Abstract 

J,H. Harding 
ABA Industrial Technology, 

Harwell Laboratory 
Didcot 

Oxon. OXll ORA 

and 

N.C. Pyper 
Inorganic Chemistry Department 

University of Cambridge 
Lensfield Road 

Cambridge 

We report progress in the calculation of interionic potentials in oxide materials using 
methods developed by Wood and Pyper (1986a,b). A particular problem in oxides is the 
energy required to create the ion in the crystalline environment. This, the rearrangement 
energy, may be written as 

This energy is highly sensitive to the details of the environmental potential since the oxide 
dianion is unstable in the gas phase. 

When the ion wavefunctions have been calculated for the correct environment, the 
interionic potential may be obtained from 

U(R) = < '¥" (rt, rz, ... , rn) I H I '¥" (rt, rz, ... , rn) > 

where H is the standard crystal hamiltonian and I 'l'cr (11., rz, ... , rn) > the crystal 
wavefunction. 

Results are presented for MgO and preliminary results are presented for U02. 

• Wood CP and Pyper NC (1986a); Phil. Trans. Roy. Soc. A320 71. 
• Pyper NC (1986b); Phil Trans. Roy. Soc. A320 108. 
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0-H VIBRATIONAL FREQUENCIES IN LIQUID WATER FROM 
COMBINED AB INITIO AND COMPUTER SIMULATION 

METHODS 

Abstract 

Kersti Hermansson 
Department of Chemistry, 

Uppsala University, 
Box 531, 

S-75121 Uppsala, 
Sweden 

and 

Siiren Knuts 
Department of Quantum Chemistry, 

Uppsala University, 
Box518, 

S- 75120 Uppsala, 
Sweden. 

The molecular-level stiucture and dynamics of liquid water and ionic aqueous solutions 
constitute a particular challenge to computational chemists and physicists. The difficulty 
lies in the accurate modelling of short- and long-range interactions of the polarizable water 
molecule and simultaneously incorporating this model in a statistical-mechanical 
description of liquids. We have been exploring a way to combine the techniques of 
quantum chemistry and statistical-mechanical computer simulations to study the internal 
0-H vibrations of water molecules in liquid water. 

A number of system configurations were selected randomly from the atomic positions from 
a Monte Carlo simuiation on bulk water (MCY potential, 300 K). For each configuration, 
ab initio calculations, of MP2 type (i.e. including electron correlation effects) were 
performed on a water pentamer supermolecule surrounded by point charges to mimick 
distant water neighbours out to 15 A Intensity-weighted densities-of-states have been 
calculated and compared with experimental spectra. The resuits of this pilot-study are in 
quantitative agreement with the experimental band position and band width. It appears 
that the success of these computations relies on a model which incorporates (i) ab initio 
calculations with a large supermolecule, long-range electrostatic interactions and electron 
correlation effects, (ii) the determination of an anharmonic potential curve (force constants 
up to fourth order), and (iii) a quantum- mechanical treatment of the vibrational problem. 
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Abstract 

SIMULATIONS OF METALLIC SURFACES 

K.D. Hammonds, B.D. Todd and R.M. Lynden-Bell 
University Chemical Laboratory, 

Lensfield Road 
Cambridge. 

Sutton and Chen(1) have recently suggested a relatively simple many-body potential for 
metals of the form: 

where v;· is the potential energy of atom i, a1 is the f.c.c.lattice parameter and e an energy 
parameter. Note that the attractive part of the potential is a many-body term- the energy 
of an atom cannot be computed as a sum of separate pair interactions. The character of the 
potential may be changed by altering the values of m and n (from which C is also 
determined) and thus different f.c.c. metals may be accounted for. 

An important aspect of the potential of Sutton and Chen is that despite being more complex 
than a pair potential it does not require orders of magnitude more computer time to use. 
A metal- atom molecular-dynamics program only runs twice as slowly, at most, than a 
similar Lennard-Janes prograiiL Methods such as the Car-Parrinello technique require 
very large computing resources for even a moderate number of atoms. 

Metal surfaces are known to undergo a surface relaxation in which the top few layers of 
atoms are contracted towards the bulk. This behaviour is to be contrasted with that of 
molecular crystals where outward relaxation occurs. Extrapolating this behaviour to a 
stepped metal surface leads to the conclusion that the rather exposed step atoms should be 
even more contracted toward their neighbours than surface terrace atoms. Energy 
minimisation calculations based on the Sutton-Chen potential show that this is indeed the 
case. The closest interatomic distances obseJVed are those between step atoms and their 
neighbours directly below them. It is the many body term in the potential that is responsible 
for this behaviour. A simple pair potential would give an outward relaxation. 

The molecular-dynamics technique is being used to investigate the way in which the surface 
of a metal startS to disorder as the temperature is raised. Results will be presented for flat 
( 100) and (111) surfaces and also various stepped surfaces. Results for Rb, Pt and Ir- which 
are modelled with different indices m and n -will be compared. 

(1) Sutton, AP. and Chen, J., 1990, Phil. Mag. Lett., 61, 139. 
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CHEMOS SELF CONSISTENT MOLECULAR DYNAMICS OF 
COMPLEX SYSTEMS 

Abstract 

A.M. Stoneham 
AEA Industrial Technology 

Harwell Laboratory 

Most theoretical physicists yearn for "first principleS1
\ for the words "a priori11 represent a 

virtue, even if (like most virtues) it is claimed more often than found. Theoretical chemists 
and biologists, not to mention those in technology, are aware that there are many important 
problems for which the most basic methods are not yet helpful. It is this type of problem 
which I shall address; perhaps the title of my talk should have been "the niche for 
semi-empirical methods". Such methods, when used properly, can have several advantages: 
they are simple enough for many useful calculations to be done on a PC; they exploit well
known and widely-studied methods; they are self-consistent in the usual sense. The key to 
their extended value is the way they can be embodied in molecular dynamics, unlike static 
approaches, does not need to be told an answer in advance; indeed, one example showed 
behaviour of biological molecules which appears to be a new form of transmitter/receptor 
interaction. 

The basic ideas of the method are simple. An initial geometry is selected and a reasonable 
(but incomplete) iteration to self consistency achieved. Analytical forces are found for that 
geometry, and molecular dynamics started. At each time step, achosennumberofiterations 
to self-consistency (typically 12) are carried au~ and the process continues. External fields 
and force fields can be applied, and there are other options relating to finding saddle points 
or handling especially light ions. Damped dynamics can be used to optimise geometries. 
Clearly the strategy can be extended to methods which are closer to first principles, though 
it often suffices to give good qualitative and sensible quantitative predictions. This is so 
for the three examples of applications I shall discuss: 

(1) Does the Scanning Tunnelling Microscope really measure geometries of molecules? 
Here the results offer an explanation of why CO absorbed on metals is not seen in the STM: 
the tip causes reorientation, and the predicted image (tunnel current versus probe position) 
does not have the structure anticipated. 

(2) Should breathers be seen in polyacetylene? This is an example where simple 
interatomic potentials do not work (the bonding pattern changes dynamically) and where 
the behaviour after excitation to an electronic excited state has interesting subsequent 
dynamics. 

(3) The neurotransmitter serotonin (which controls your sleep and sex life) acts by 
interaction selectively with receptors. The selectivity is partly by shape (the jig-saw picture) 
and partly by a molecular event (probably electron or proton transfer) at the receptor. We 
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have looked at the iiiteractions with model recepto"' and find a novel catalysed proton 
transfer. This may be characteristic of a range of biological processes, and it illustrates how 
self-consistent molecular dynamics can point to phenomena not easily recognised in otber 
ways. 

AB INITIO MD OF LIQUID AND AMORPHOUS SILICON 

Abstract 

~ 

I. Stich 
Cavendish Laboratory (TCM) 

Madingley Road 
Cambridge CB3 OHE. 

An extensive ab initio molecular dynamics (AIMD) study of liquid and amorphous silicon 
will be presented. In this scheme the interatomic potential is explicitly derived from the 
electronic ground-state treated with accurate density functional techniques. The present 
AIMD results show important differences when compared to results based on empirical 
potentials. These differences will be discussed in detail. 

The AIMD provides an excellent description of the local order in the liquid. Analysis of 
the valence electronic charge density shows persistence of some covalent bonds in the melt. 
These bonds give rise in several system time correlation functions to well identifiable 
features associated with stretching vibrations. In the liquid the covalent bonds are 
continuously forming and breaking in response to atomic motion. On average the majority 
of bonds are broken leading to a fast diffusion and to the metallic behaviour of the melt. 

The model amorphous sample was obtained by simulated quench from the melt. A cooling 
rate of 1014 K/s was sufficient to recover a tetrahedral network starting from the metallic 
liquid having average coordination larger than 6. Dramatic changes in physical properties 
are observed upon cooling. In particular a gap forms in the electronic spectrum indicating 
a metal to semiconductor transition. The as-quenched structure has average coordination 
very close to 4, but contains several coordination defects as well as a large fraction of 
distorted hoods. Subsequent annealing reduces the amount of strain and the number of 
defects present in the system. The average structural, dynamical and electronic properties 
of the model sample are in impressive agreement with the available experimental data. A 
detailed analysis of the structural relaxation processes accompanying annealing will be 
presented and compared with recent experiments. 

* Work done at the International School for Advanced Studies, Trieste, Italy in 
collaboration with Profs. R. Car and M. Parrinello. 
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THE INTERACTION OF A POINT CHARGE WITH AN 
ALUMINIUM (111) SURFACE 

Abstract 

M.W. Finnis 
MPI fuer Metallforschung 

lnstitut Werkstoffwissenschaft 
Seestrasse 92 

7000 Stuttgart 1, 
Germany. 

The self consistent response of an Al(111) surface to the external potential of a negative 
electronic charge is calculated, as a function of the position of the external charge. The 
metal atoms are represented by norm-conserving pseudopotentials on a periodically 
repeated slab of three atomic planes separated by five atomic layers of vacuum, with twelve 
atoms per unit cell. Comparison of the energy is made with two classical models: (a) the 
classical contiouum model (CCM) of a metal, in which a surface is characterised by the 
position of the image plane, and (b) a discrete classical model (DCM), io which the atoms 
are treated as polarisable point charges. The CCM gives an accurate description of the 
interaction energy when the charge is more than about 2.5 Angstrom from the surface 
atomic layer. At closer approach a strong corrugation appears in the interaction energy, 
which becomes lower over atom sites than hollow sites. 

The image plane position with the CCM, fitted to the self- consistent calculations, is situated 
0.15 Angstrom outside the geometrical surface (jellium edge). Separate calculations with 
an external charge of half an electron show the significance of non-lioear response; with 
this weaker external charge, the effective image plane is 0.29 Angstrom outside the 
geometrical surface and the non-linear effect on the energy is relatively small. The 
interaction energy even at small distances is well described by the DCM, which correctly 
predicts the site dependence of the image interaction. 
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AB INTTIO CALCULATION OF DEFECT ENERGETICS IN 
ALUMINIUM 

Abstract 

A. De Vita and M..J. Gillan• 
Physics Department 
University of Keele 

Keele 
Staffordshire ST5 SBG 

• Also In Tee, 
Harwell Laboratory, 
AEA Technology, 

Oxfordshire. OXll ORA. 

A detailed study of the energetics and electronic structure of the vacancy, the interstitial 
hydrogen, and substitutional hydrogen in bulk aluminium is presented. The calculations 
are based on the supercell approach, with the bare Coulomb potential for hydrogen and a 
BHS ab irtitio pseudopotential for aluminium in the Kleinman-Rylander representation, 
the energy functional minimisation being performed with the conjugate gradients 
technique. Some special features which optimise the computational strategy for the high 
density free-electron-like metal environment will be discussed. The physical quantities 
studied are the vacancy formation energy, migration energy and volume of formation, the 
hydrogen relative energies at different interstitial sites, the diffusional hydrogen migration 
and vacancy-binding energies, and the hydrogen heat of solution. Preliminary results will 
be given for the alumirtium self- interstitial. The host lattice full relaxation is found to be 
determinant for the impurity energy proflles, and the highly localised screening-charge 
distributions deviate significantly from the predictions of the spherically averaged jellium 
models. Results compare well with experiment and with some precedent theoretical work, 
supporting the adequacy of the present technique for the study of large metal defective 
systems energetics. 
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ON THE POSSffiiLITY OF OBTAINING AN EFFECTIVE PAIR
WISE ADDITIVE INTERMOLECULAR POTENTIAL VIA AN AB 
INITIO ROUTE BY ETI'l'ING TO A COOPERATIVE MODEL OF 

Abstract 

CONDENSED PHASE CONFIGURA'l10NS 

Mihaly Mezei 
Department of Chemistry 

and 
Hunter College 

and the 
Graduate Cemre of the CUNY, 

New York, 
NY 10021, 

USA 

The paper demonstrates the feasibility of obtaining an effective pairwise additive 
intermolecular potential for liquid water at room temperature by fitting a pairwise additive 
function to the cooperatively calculated energies and virial sums of simulated liquid water 
configurations. The procedure requires iterative refinement of the fit. The importance of 
trying different functional forms has been demonstrated as well as the importance of 
including the virial sum into the fitting process. The cooperative energies and virial sums 
were calculated with the Campbell-Mezei model (derived from ab initio dimer energies) 
that includes a dipole polarisation term(1,2). 

The technique is not tied to any particular cooperative model and thns could be used in 
conjunction with any of the explicit cooperative techniques mentioned in the 
announcement. 

1. Campbell, E.S.; Meze~ M., J. Chern. Phys. 1977, 67,2338. 
2. Campbell, E.S.; Meze~ M., Mol. Phys. 1980, 41, 883. 
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Abstract 

AB INITIO EMBEDDED-CLUSTER TECHNIQUES 

R.Nada 
Royal Institution 

21 Albermarle Street 
London WIX 4BS. 

A variety of computational schemes are becoming available which allow the electronic 
structure of clusters embedded in a crystalline environment to be investigated by using 
ab-initio quantum-mechanical techniques. They can have important applications in 
catalytic studies, and in the characterisation oflocai defects in solids. Different approaches 
adopt different models for describing the two subsystems (the cluster and the outer 
medium), and for taking into account their mutual short- and long-range interactions. 
After briefly reviewing existing proposals, a specific embedding scheme is considered (C. 
Pisani, R. Doves~ R. Nada and L Kantorovich, J. Phys. Chern. 92, 7448 (1990)) that 
embodies in a self-consistent procedure the effects on the cluster solution of orthogonality 
constraints and of Coulomb and exchange fields generated by the crystal-line environment. 
The problem is treated at an ab-initio Hartree-Fock level of approximation; the solution 
for the perfect host crystal is obtained by means of the CRYSTAL program (R. Doves~ C. 
Pisani, C. Roetti, M. Causa and V.R. Saunders, QCPE Program No 577, 1989). Examples 
are provided concerrting defects in covalent, ionic and molecular crystals in order to 
illustrate the different types of correction to the crystal solution, and to evidentiate 
capabilities and shortcomings of the method. The possible iniluence of long-range 
polarisation of the outer medium on the electronic structure in the cluster region and on 
defect formation energy is considered. 
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RESTRICI'ED-BONDING PAIR POTENTIAL FOR SILICON 

Abstract 

Graeme J. Ackland 
Department of Physics, 
University of Edinburgh, 

Kings Buildings, 
Edinburgh. 

Numerous recent attempts have been made to derive empirical potentials for use in 
simulations. Various attempts have been made based on many-body forces, embedded 
atom approaches and expansion in cluster terms. The main feature underlying all these 
approaches has been their lack of transferability between coordinations without 
reparameterisation. This failure is put into sharp focus by the relative ease with which silicon 
can be treated by psuedopotential electronic structure calculation. 

Here, we present an empirical treatment of silicon simply in terms of restricted bonding 
pair potentials. We show that this level of approximation allows a simple qualitative 
description of the main features of silicon polytypes, point defects, surfaces and clusters 
and exhibits a degree of transferability without reparameterisation hitherto unrealised by 
empirical models. 

Configurations found by empirical methods are viewed not as an end in themselves, but as 
a method of generating plausible geometries for investigation by ah iniJio methods and a 
guide to the type of interaction suitable for Monte Carlo simulations. 
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DENSTIY DEPENDENT POTENTIALS FOR SIMULATIONS OF 
SIMPLE METALS 

Abstract 

Alison B. Walker 
School of Physics 

University of East Anglia 
Norwich. NR4ITJ 

and 

Roger Taylor 
Division of Informatics 

National Research Council of Canada 
Ottawa. K!A OR6. 

The total energies for simple metals have been calculated in terms of a density dependent 
pair potential and an explicitly density dependent term (the volume potential). The 
potentials are based on a first-principles nonlocal pseudopotential theory with a correction 
term in the volume potential to allow for the effects of the density dependence of terms 
beyond second order in perturbation theory, adjusted to give the obsexved equilibrium 
density. Simple analytic forms have been obtained for the pair and volume potentials. The 
constant volume forms of the pair potentials are known to be superior to those of the 
effective medium theory (EMD in dealing with eg phonons and electron transport and it 
is likely that they should be more reliable than EMT when generalised to handle 
inhomogeneous systems. 
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DEFORMATION DIPOLE POLARISABLE ION POTENTIALS FOR 
MOLTEN SALTS 

Abstract 

R.L. McGreevy, 
Clarendon Laboratory 

Parks Road 
Oxford. OXl 3PU. 

We have simulated the structure of molten CsCl using a 'deformation dipole' polarisable 
ion potential, where ions have both point charges and dipoles. The magnitude of a dipole 
h determined by the local electric field and the repulsive interaction between neighbours. 
This produces significantly better agreement with experimental results than rigid ion or 
shell model simulations, can run much faster than a shell model simulation and parameters 
are simpler to derive. 

AB INITIO LDF CLUSTER CALCULATIONS OF DEFECfS IN 
SOLIDS 

Abstract 

R. Jones 
Department of Physics 
University of Exeter 

Exeter 
EX44QL 

LDF calculations are intrinsically more efficient than Hartree- Fock ones and are capable 
of yielding accurate structural information on solids. For real-space basis functions, cluster 
methods are superior to supercell ones. Here we describe a fast LDF procedure useful for 
clusters as large as 100 atoms. We apply the method to various defects in solids. Since 
defect structures cannot usually be experimentally resolved, it is essential to compute other 
measurable-quantities. These include local vibrational modes and hyperfine parameters. 
Several applications of calculating the former are described. 
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THE K.P METIIOD IN TOTAL ENERGY CALCULATIONS 

Abstract 

I..J. Robertson and M.C. Payne 
Cavendish Laboratory 

Cambridge 

Calculation of the total energy of a metallic system requires a large number of k·points and 
is consequently very time consuming. We describe the lwl. method which allows the rapid 
evaluation of very accurate data at a large number of k-points from exact data at very few 
k-points. The result is a reduction in computational times over traditional methods of up 
to several orders of magnitude. 

We demonstrate the method in operation for a diverse range of aluminium structures. We 
carefully analyse all those errors present, those due to the k.p. method and those due w the 
use of a finite number of k-points. We demonstrate that for these structures, the extra error 
introduced by the k.p. method is negligible. 

PERIODIC AND CLUSTER HARTREE·FOCK CALCULATIONS IN 
SILICATE SYSTEMS 

Abstract 

C.R.A. Catlow, 
Royal Institution, 

21, Alberrnarle Street, 
London. WlX 4BS. 

Hanree Fock methods can play a major role in the study of the properties of both perfect 
and defective inorganic materials. The range and limitations of the techniques will be 
discussed with special reference to three recent srudies: 

• Electronic structure studies of 4 and 6 coordinate silicate minerals. 
• Investigation of the activation of methanol in zeolite ZSM~ 5. 
e Derivations of interatomic potentials for AhO:;. 
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Abstract 

SIMULATIONS OF AMORPHOUS SIUCON 

GJ. Morgan and J, Holender 
Physics Department 
University of Leeds 

We have used the Stillinger-Weber potential with two- and three- body components in 
standard molecular dynamics to study amorphous silicon. We stan with the basic 
amorphous model of Wooton, Winer and Wealre composed of216 atoms and put together 
blocks of such atoms to create a structure of more than 100,000 atoms. This structure is 
then heated rapidly to remove periodicity, followed by rapid cooling to zero temperature. 
The calculated structure factors agree extremely well with experimental measurements on 
amorphous silicon. 

ANGULARLY DEPENDENT MANY BODY POTENTIALS WITHIN 
TB BUCKEL THEORY 

Abstract 

D. G. Pettifor, M. Aoki and P. Alinaghian 
Department of Mathematics 

Imperial College of Science, Technology and Medicine, 
London. SW7 2BZ. 

Recently a new angularly~dependent many-body potential for the bond order has been 
derived within TB Hucke! theory by doing penurbation theory about the bond. This 
provides explicit analytic expressions for the dependence of the a, n, or 0 bond orders 
on the local atomic environment. Applications to transition metals and semi-conductors 
will be discussed. 
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MOLECUlAR MODELLING OF AROMATIC POLYESTERS 

Abstract 

P. Lautenschlager and J. Brickman 
Technische Hochschule Darmstadt, 
Institut fur Physikalische Chemie I, 

Petersenstrasse 20, 
6100 Darmstadt, 

Germany 

and 

K. Pierloot 
Laboratorium voor Quantumchemie, 

K U. l.euven, 
Celestijneniaan 200F, 

3001l.euven-Heverlee, 
Belgium. 

and 

Jippe van Ruiten, Betty Coussens and Robert J. Meier 
DSM Research, 

P.O. Box 18, 
6160 MD Geleen, 
The Netherlands. 

An important characteristic of a polymer chain is its conformation, as it is directly related 
to the structure of both crystalline and amorphous states, thus determining mechanical 
properties, optical properties (non-linear optical materials), electrically conducting 
properties and the stiffness of polymer chains (liquid crystalline polymers, LCP's). Chain 
conformation is mainly determined by the rotational degees of freedom. An approach 
finally leading to the capability of molecular design. therefore involves the determination 
of the corresponding rotational energy profiles. 

Both the lack and difficulty of obtaining the necessary and accurate experimental data urge 
for a theoretical approach. The purpose of this paper is essentially to discuss the merits of 
various theoretical methods. An integrated approach employing ab-initio, semi-empirical 
(AM!) and force field (CVFF) methods to study torsional barriers in conjugated aromatic 
molecular systems is presented. It is the...firsLtime that such an attempt including full 
geometry optimisation up to the ab-initio level is reported. First. we have focussed on 
monomer-like units of polyparahydroxybenzoic acid (PHBA) and polyethylene 
terephthalate (PET). Coupling between the torsional motions was studied with the 
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semi-empirical AMI method as well as with the Consistent Valence Force Field. 
Molecular Dynamics simulations were carried out on single chains; the relation berween 
MD results and chain flexibility is discussed as well as the consequences of the uncertainty 
in barrier heights for the MD results and the calculated persistence length. 

Lmge differences berween results obtained by the different levels of calculation were 
obtained. This as well as the lack of sufficient and accurate experimental data hampers 
progress in modelling the properties of the conjugated aromatic molecules investigated 
here. 

In a second step we searched for a calculational method that would predict the rotational 
barriers correctly. Results of the semi-empirical AM! and MNDO-PM3 calculations were 
compared with experimental gas-phase structural data Benzaldehyde was also subjected 
to a large variety of ab-initio basis sets, up to the correlated level. Being computationally 
very demanding, we could not find the ab-initio results to lead to the correct potentials, 
even when performed at the highest level reported here. However, by introducing one 
pragmatic scaling factor, it was found that the AM! method reproduced the experimental 
results within 15%, which is a very important and practical result for the modelljng of 
(conjugated) polymers. 

The third step in the process, currently in progress, is the development of a force field based 
on the correct, i.e. involving the scaled AM! data. potentials. This will subsequently enable 
us to perform the necessary Monte Carlo and Molecular Dynamics calculations which will 
now, in principle, lead us to the correct energetics and dynamics of the system under 
investigation. 

COMPUTER SIMULATION OF THE GLASS TRANSmON 

Abstract 

R. Boscolo and R.I. Jacobs 
Mathematics Department, 

Imperial College, 
London. SW7. 

We have carried out computer simulations in a model of a transition-metal-boride glass 
(N8()13w) with the aim of observing and understanding the glass transition. Various 
quantities such as the specific heat and the mean-square atomic displacement show 
physically significant changes in behaviour near the transition. This behaviour is examined 
and analysed. 
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TOTAL· ENERGY PSEUDO POTENTIAL CALCULATIONS ON 
PARALLEL COMPUTERS 

Abstract 

M.C. Payne 
Cavendioh Laboratnry, 

Madingley Road 
Cambridge CB3 0 HE 

The Car-Parrinello scheme(!) has made it possible tn perform ab initio molecular dynamics 
simulations. Using the capabilities of conventional supercomputers, simulations can be 
performed for unit cells containing up to 100 atoms and for simulation times of the order 
of picoseconds. These numbers will appear relatively small to those who are accustomed 
to performing simulations using empirical potentials. There is no obvious way of 
significantly increasing either the number of atoms in the unit ceU or rhe length of the 
·simulations on a single processor computer without a fundamental change in computer 
technology. However, both of these quantities can be significantly increased by using the 
larger number of processing units available in parallel machines. The recent availability 
of low cost, higb speed processors such as the Intel i860 makes such a course particularly 
attractive at the present time. In the present utlk I shall dil;cuss the use of parallel 
computers for total energy pseudopotential calculations and describe the prospects for 
performing large ab-initio simulations on such machines in the future. 

1. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). 

AB INITIO MOLECULAR DYNAMICS : A CLASSICAL TOOL TO 
STUDY QUANTUM EFFECTS 

Abstract 

R. Car, 
IRRMA, 
Lausanne, 

Switzerland. 

The talk will give a brief introduction to the principles of ab initio molecular dynamics. 
Recent progress in the technique will be reviewed. with emphasis on new directions, such 
as the calculation of free energies. 
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Abstract 

RMC OR 'WHEN DO YOU NEED A POTENTIAL' 

R.L. McGreevy 
Clarendon Laboratory 

Parks Road 
Oxford 0Xl3PU 

It is rare that computer simulations of disordered systems based on an empirical porential, 
however complex produce structures that agree with the available diffraction data within 
its known errors. It is generally very difficult to modify potentials to improve the level of 
agreement, so while such simulations may give a good understanding of the type ofstrucrure 
in the system they are unsuitable for investigating strucrural details. Ab initio simulations 
are usually too small to give information on anything other than short range order. 

Reverse Monte Carlo (RMC) simulation is a method of structural modelling that uses 
~xperimental diffraction data 'in place' of a potential. It is applicable to many different 
types of system and data. I will describe the algorithm briefly and then illustrate its use in 
studies of both simple and complex systents (e.g. expanded Caesium and fast ion conducting 
glasses) where potentials are difficult to develop. In particular I will stress the detailed 
information that is contained in diffraction data and the ways in which this might be used 
to provide information on potentials. 

Abstract 

SIMULATION OF NON-ADIABATIC PROCESSES 

A..J. Fisher 
Oarendon Laboratory 

Parks Road 
Oxford. OX! 3PU. 

Considerable experience bas now been gained in generating accurate adiabatic energy 
surfaces for molecules and solids by ab initio and semi-empirical techniques. However, 
many questions in the theory of chemical reactions and defect processes involve 
non-adiabatic phenomena, where the Born-Oppenheimer approximation fails. We 
describe how approximate information about such processes can be obtained and give an 
example of such a calculation involving the F-cenrre in alkali halides. 
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The CCP5 Literature Survey 1990 

W. Smith 

October 22, 1991 

In the following pages we present the CCP5 Literature Survey for 1990. 
This year, by way of a bonus, we have a supplement to the usual INSPEC survey in 

the form of a directory of papers published in the journal Molecular Simulation, provided 
to us by the editor in chief N. Quirke, to whom we offer our thanks. 

All the references included in the main list are selected from the IN· 
SPEC database and are reproduced with the permission of INSPEC, the 
Institution of Electrical Engineers. The INSPEC database covers all areas of 
physics, electronics and computing. It follows from the above paragraph that 
INSPEC is not responsible for missing references, nor for any typographical 
errors, which may have resulted from our retyping of the computer printout. 
We are grateful to Mr. Geoff Jones, Head of Selective Services at INSPEC 
for his advice and assistance. 

Finally, we thank Mrs. C.M. Smith for proof reading the pages presented here and 
Miss A.P. Haskayne of the Da.resbury Reprographic Service for typing it all. 
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Correlations between shorHange order parameters during shorHange order reactions. 
Gahn, U. and Pitsch, W. 
Acta Metal!. (USA), vo!.37, 2455-62 (1989). 

Monte Carlo renormalization group study of three-state and four-state Potts model on 
two-dimensional random triangle lattice. 
Huang Wu-qun, Chen Tian-lun and Xin Yun-wei 
Acta Phys. Sin. (China), vol.38, 659-64 (1989). In Chinese. English translation in: 
Chin. J. Phys. (USA). 

Calculation of the entropy of a fluid by a Monte Carlo simulation based on free volume. 
Byoung-Jip Yoon and Scheraga, H.A. 
TifEOCHEM (Netherlands), vol.58, 33-54 (1989) 

The molecular dynamics of the ~-sphtal of the polypentapeptide of elastin in "state ill" 
with 2.9 pemamers per turn. · 
D.K. Chang and Urry, D.W. 
TifEOCHEM (Netherlands), vol.58, 303-12 (1989) 

Computer simulations of the dynamics of multicomponent ion exchange and adsorption in 
fixed beds - gradient-directed moving finite element method. 
Yu, Q. and Wang, N.-H.L. 
Cornput. Chern. Eng. (UK), vol.l3,9!5-26 (1989). 

Structure modeling of molecular liquids for the systems benzene, hexafluorobenzene and 
their equimolar mixture. 
Ostheimer, M. and Bertagnolli, H. 
Z. Phys. Chern. Neue Folge (West Germany), vol.162, 171-89 (1989) 

Computer simulation of depolarized light scattering from diatoms with hard core and 
square well interactions at low temperatures. 
Gray, M.G. and Schieve, W.C. 
J. Chern. Phys. vol.91, 5296-301 (1989) 

Electrical properties of polarizable ionic solutions. I. Theoretical aspects. 
Caillol, J.M., Levesque, D. and Weis, J.J. 
J. Chern. Phys. vol.91, 5544-54 (1989) 

Electrical properties of polarizable ionic solutions. II. Computer simulation results. 
Caillol, J.M., Levesque, D. and Weis, J.J. 
J. Chern. Phys. vol.91, 5555-66 (1989) 

A Monte Carlo simulation of water molecules near a charged wall. 
Aloisi, G., Foresti, M.L., Guidelli, R. and Barnes, P. 
J. Chern. Phys. vol.91, 5592-6 (1989) 
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Velocity correlations in the molecular dynamics ensemble: computation of the distict 
diffusion coefficients. 
Raineri, F.O., and Friedman, H.L. 
J. Chern. Phys. vol.91, 5642-7 (1989) 

Adiabatic dynamics of the solvated electron in liquid ammonia. 
Sprik, M. and Klein, M.L. 
J. Chern. Phys. vol.91, 5665-71 (1989) 

Lattice Lorentz gas. 
Ernst, M.H. and van Ve1zen, G.A. 
J. Phys. A, Math. Gen. vol.22, 4611-32 (1989) 

Corrections to scaling for diffusion in disordered media. 
de Alcantara Bonfim, O.F. and Berrondo, M. 
J. Phys. A, Math. Gen. vol.22, 4673-9 (1989) 

Shear-induced flow birefringence in a simple fluid: NEMD study 
Sang-Rak Kim 
J. Korean Phys. Soc. vol.22, 319-22 (1989) 

Anisotropic bond percolation using the large cell Monte Carlo real space renormalization 
group method. 
Choong-Seob Kim and Min-Ho Lee 
J. Korean Phys. Soc. vol.22, 328-35 (1989) 

Monte Carlo simulation of a two dimensional anisotropic plane rotator model. 
Romano, S. 
Liq. Cryst. vol.6, 457-66 (1989) 

Molecular dynamics and carbon~l3 relaxation in the nematic and smectic A, C and B 
phases of 50.7. 
Lewis, J.S., Shams, Z., Tomchuk, E. and Bock, E. 
Mol. Cryst. Liq. Cryst. vol.173, 49-59 (1989) 

Computer~simulation of gold-redistribution in silicon. 
Gdanitz, H. and Schmalz, K. 
Diffus. Defect Data, Solid State Data B, Solid State Phenom. (Lichtenstein), vol.6-7, 
159-64 (1989) 

Structural and electronic properties of crystalline and glassy calcium-zinc compounds. I. 
Trigonal prismatic ordering of tetrahedral close packing. 
Hafner, J. and Tegze, M. 
J. Phys. Condens. Matter, vol.l, 8277-91 (1989) 

Structural and electronic properties of crystalline and glassy calcium~ zinc compounds. II. 
Electronic density of states. 

Tegze, M. and Hafner, J. 
J. Phys. Condens. Matter, vol.l, 8293-303 (1989) 

What do Landau free energies really look like for structural phase transitions? 
Giddy, A.P., Dove, M.T. and Heine, V. 
J. Phys. Condens. Mauer, vol.l, 8327-55 (1989) 

SMITII-91(263 2 



An explicit expression for finite-size corrections to the chemical potential. 
Srnit, B. and Frenkel, D. 
J. Phys. Condens. Matter, vol.l, 8659-65 (1989) 

Investigation of the recoil fluxes in a SiO:JSi target by means of Monte Carlo simulation. 
Vizke1ethy, G. 
Radiat. Eff. Defects Solids, vol.l08, 295-306 (1989) 

Carbon: the nature of the liquid state. 
Galli, G., Martin, R.M., Car, R. and Parrinello, M. 
Phys. Rev. Lett. vol.63, 988-91 (1989) 

Comparison between cluster Monte Carlo algorithms in the Ising model. 
Wolff, U. · 
Phys. Lett. B, vol.228, 379-82 (1989) 

Monte Carlo simulations of a two-dimensional charged polymer chain. 
Takashima, J., Takasu, M. and Hiwatari, Y. 
Phys. Rev. A, Gen. Phys. vol.40, 2706-11 (1989) 

Water-like melting behaviour ofSi02 investigated by the molecular dynamics simulation 
technique. 
Vessal, B, Amini, M., Fincham, D. and Catlow C.R.A. 
Philos. Mag. B, Phys. Condens. Matter Electron. Opt. Magn. Prop. vol.60, 753-75 (1989) 

Monte Carlo srudy of the liquid CdTe surface. 
Wang, Z.Q., Stroud, D. and Markworth, A.J. 
Phys. Rev. B. Condens. Matter, vol.40, 3129-32 (1989) 

Molecular-dynamics study of anhannonic effects in silicon. 
Wang, C.Z., Chan, C.T. andHo, K.M. 
Phys. Rev. B. Condens. Matter, vol.40, 339Q-3 (1989) 

Monte Carlo simulation of transformations in SiC. 
Kabra, V.K. and Pandey, D. 
Phase Transit. vol.l6-17, 2ll-29 (1989) 

Monte Carlo calculation of the dependence of conformational free energy of polyethylene 
chains on degree of stretching, molecular mass and temperature. 
Varynkhin, S.Ye. and Zaitsev, M.G. 
Vysokomol. Soedin. A (USSR), vol.31, 1858-64 (1989) in Russian. English translation in 
Polym. Sci. USSR (UK) BLDSC: 0046.80200 

Properties of Leonard-Jones mixrures at various temperatures and energy ratios with a 
size ratio of two. 
Huber, M.L. and Ely, J.F. 
Report NIST!fN-1331, Nat. lnst. Stand. & Techno!., Washington DC, USA (May 1989) 

Global simulations on scalar, vector and parallel LCAP-type supercomputers. 
Clementi, E. 
ICS 88. Third International Conference on Supercomputing. Proceedings, 
Supercomputing '88, Boston, MA, USA, 15-20 May 1988, (St.Peter.;burg, FL, USA: Int. 
Supercomputing lnst. 1988) p.63-78 vol.l) 
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Computer simulation of random ballistic deposition. 
Jullien, R. and Meakin, P. 
Universalities in Condensed Matter. Proceedings of a Workshop, Les Houches, France, 
15-25 March 1988 (Berlin, West Germany: Springer-Verlag 1988) p.199-205 

Dynamics and damage spreading in cooperative systems: a numerical search for 
universality. 
Stauffer, D. 
Universalities in Condensed Matter. Proceedings of a Workshop, Les Bouches, France, 
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Dynamics of Disordered Materials. Proceedings of ther ILL Workshop, Grenoble, France, 
26-28 Sept. 1988 (Berlin, West Germany: Springer-Verlag 1989) p.86-90 

Solution of three-dimensional problems of the theory of elasticity using the Monte Carlo 
method. 
Pobedrya, B.E. and Chistyakov, P.V. 
Appl. Math. Mech. vo1.52, 270-4 (1988) 

Reaction of an irregular particle with a gas: Monte Carlo method for the solution of the 
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Rajamani, K. 
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Non·Maxwell velocity distributions in equilibrated fluids. 
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Chern. Phys. Lett. vol.163, 328-32 (1989) 
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Frattini, R., Gazzillo, D., Sampoli, M. and Vallauri, R. 
Chern. Phys. vol.138, 337-46 (1989) 

Computer simulations of hydrated proteins. 
Clementi, E. 
J. Mol. Liq. vol.41, 233-9 (1989) 

Self·exchange velocities in molten (Li, Na, K)Cl of the eutectic composition reflecting the 
Chernla effect for the internal mobilities. 
Endoh, A. and Okada, I. 
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Molecular dynamics simulation of electron-transfer reactions in solution. 
Zichi, D.A., Ciccotti, G., Hynes, J.T. and Ferrario, M. 
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Molecular dynantics study on the collapse of A-type zeolite framework. I. Temperature 
dependence and prediction of melting phenomena. 
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J. Phys. Chern. vol.93, 6463-8 (1989) 
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Tunneling of hydrogen between molecules in solution. 
Schmidt, P.P. 
J. Phys. Chern. vol.93, 6610-14 (1989) 

Cavity potential in type I gas hydrates. 
Rodger, P.M. 
J. Phys. Chern. vol.93, 6850-5 (1989) 

Universal fmite-size scaling amplitudes of interfacial free energies in Monte Carlo 
simulations. 
Park, H. and den Nijs, M. 
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Directed percolation in 2+ 1 dimensions. 
Grassberger, P. 
J. Phys. A, Math. Gen. vol.22, 3673-9 (1989) 

A neutron diffraction and molecular dynamics investigation of the structure of vitreous 
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Wright, A.C., Clare, A.G., Etherington, G., Sinclair, R.N., Brawer, S.A. and Weber, 
M.l. 
J. Non-Cryst. Solids, vo!.IIJ, 139-52 (1989) 

The dynamics of gallamine: a potent neuromuscular blocker. A deterntination by quantum 
mechanics and molecular dynamics. I. In vacuo studies. 
Saldanha, J.W., How lin, B., Du Toit, L. and Palmer, R.A. 
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Potential of a deuterium molecular trapped in an external field of sr..'I'eened point charges 
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Mod. Phys. Lett. (Singapore), vol.3, 1031-8 (1989) 

Dual ensemble and fluctuations for systems with random elements. 
Muga, J.G. attdLevine, R.D. 
Mol. Phys. vol.67, 1209-23 (1989) 

Effects of intermolecular interactions on depolarized Rayleigh scattering intensities of 
fluids of linear molecules. A computer simulation study. 
Barreau, A., Chave, A., Duman, B., Thibeau, M. and Ladanyi, B.M. 
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Specific heats for simple molecular fluids from molecular dynamics simulations. 
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Hard gaussian overlap fluids. 
Rigby, M. 
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Computer simulation and perturbation theory of fluids mcxielled using three- and six-site 
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Vapour-liquid equilibria for Stockmayer fluids. 
Smit, B., Williams, C.P., Hendricks, E.M. and DeLeeuw, S.W. 
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Nonequilibrium constant temperature molecular dynamics study of the atomic diffusion in 
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A Peierls distortion in the liquid state: local order of liquid As. 
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Shear-induced anisotropy of the structure of dense fluids. 
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Suppressing critical slowing down in two--dimensional Ising model simulations by the 
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Monte Carlo renormalization of the three-dimensional Ising model. 
Blote, H.W.J., Compagner, A., Croockewit, J.H., Fonk, Y.T.J.C., Heringa, J.R., 
Hoogland, A., Smith, T.S. and van Willigen, A.L. 
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Phase transitions in self-dual Ising models with multispin interactions and a field. 
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Noise-induced escape from attractors in one-dimensional maps. 
Beale, P.D. 
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Collective excitations in a liquidsemimetal: molecular-dynamics simulation of the dynamics 
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Wetting transitions near the bulk critical point: Monte Carlo simulations for the Ising 
model. 
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Phys. Rev. B, Condens. Matter, vol.40, 6971-9 (1989) 

SMITH-911263 6 



Domain growth and freezing on the triangular lattice. 
Kang, H.C. and Weinberg, W.O. 
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