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CCPS.

CCP5 is an organisation created by the U.K. Government sponsored
Science and Engineering Research Council (S.E.R.C.).

Its purpose is to fund conferences and promote co-operative research
in the field of Computer Simulation using Molecular Dynamics and Monte

Carlo techniques.

We feel that you may be interested in our quarterly newsletter
containing CCP5 announcements and articles on computational techniques.
You will also be sent notices of forthcoming CCPS Conferences which we
hope you and your colleagues will attend.

For your information there are other CCP's on the following subjects:

CCPl  Correlated Wavefunctions.
CCPZ  Continuum States.

CCP3  Surface Science.

CCP4  Protein Crystallography.
CCP6  Heavy Particle Dynamics.

Pr. D.M. Heyes,
CCPS Secretary.
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Editorial

It is always a pleasure to thank the contributors to each CCPS
quarterly newsletter. We are fortunate to have such willing assistance
from the CCP3 community. Special thanks should go to David Heyes (Royal
Holloway} and David Fincham (Queen Mary) who consistently contribute
articles of high quality with the informality that the newsletter re-
quires. We are also specially pleased to reproduce the-articles by
A.R. Tindell, D,J. Tildesley and J. Walton (Southampton) and D. Brown
{UMIST). Their articles on. computational matters are the:stuff of CCPS - -~
and we invite our readers to feollow- their example! Thank you to all
concerned.,

General News

Te David Heves (CCP5 Secretary) has asked for the following announce-
ment to be made. : . : e g
CCPSIWill.ﬁOW refund traéel expenses necessary to perform collabor~ -
ative research. Applications will be considered on their merits and
should be made to members of the CCPS Executive Comm;ttee con51st1ng of

Prof, P G. Powles, Lo Dr. Je H R Clarke, L ”"Dr..J L. FlHHEYi'

{(CCP5 Chairman), ... Chemistry. Department,. ... Crystallegraphy Deépartment,
Physics Laboratory, UMaZeSeTey .0 - .. .. Birkbeck College,
University of Kent, Sackville Street, Malet Street,

Canterbury, Manchester M860 1(QD. London WC1E 7HX,

Kent CT2 7iR.

2. The CCP5 Program Library continues to grow. We have further
contributions from D. Heyes and W. Smith., A catalogue is given pelow.
Readers intrested in obtaining copies of any of these programs should
contact Dr. W, Smith at Daresbury Laboratory.

Prdgfam Author Purpose

MDATOM 5. Thompson MD on monatomic liguids

HMDIAT S. Thompson MD on homonuclear diatomics

MPLIN 5. Thompson MD on linear molecules

MDLING 3. Thompson As MDLIN but with point guadrupole
MDTETRA 3. Thompson MD on tetrahedral molecules
MDEBOLY S. Thompscon MD on peolyatomic molecules

MDATOM D. Fincham MD on monatomic liguids

MDDIAT D, Fincham MD on homonuclear diatomics
MDDIATQ b. Fincham As MDDIAT but with guadrupole
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Program aunthor Purpose

MDIONS D.F. & N. Anastasion MD on ienic liquids

HLJ1 ... . D. Hevyes. co.. . MD on menatomic liquid5a~-~

HL.J2 .-:Zf” D. Héyés: Hi_.'-w ;ﬁn--;.As HLJ1, w1th VelOClty autocorrelatlon

HLJ3 .” . D. Heves — y=a¢-f, - -As HLJ1 W1th llnk cells

HLJ4- - . D. Heyes==_. --;-:ﬁ-_fn.As HLJ1, plus constant pressure and/or
: S Lo .. temperature o T

EWALD1 W. Smith Subroutines to calculate potential,

forces and torgues in multlpole
EWALD2 W. Smith system. -

These pfograms are available, free of charge. Readers wishing: to -
contribute programs to the library should contact Dr. W. Smith at
Daresbury. o o . . s

3. ,_The next CCPS. Meeting will take place in Reading on 16th and '~ - -
17th December 1982. The subject will be 'New Computers/the Simulation of
Quantum Mechanical Systems'., Interested readers should contact :
Professor R.. Hockney of the Computer Science Department, Reading ™~
University, Whiteknights Park, Reading RG& ZnX., . . SR

]



A Review of the Fifth CCPS Meeting held at the Physical
Chemistry Laboratory, Oxford between the 17th and 18th
December, 198l. The subject of the meetlng was "“The .
Computer Simulation of Interfaces'" : .

by D.M. Heyes,

_ The flrst talk of the conference was glven by DR S TOYVAERD (Unlver51ty

- of Copenhagen, Denmark). He. reviewed his present interests. in surface.
phencmena. . The author warned of the care. that must be taken in the chioice of
the algorithm for integrating the equations of motion when simulating hon-
uniform systems by Molecular Dynamics or MD. . The adequacy of time reversal
and energy conservation are misleading criteria. . The Verlet algorithm is
particularly suspect when using these tests.. Satlsfactory behaviour in these
respects does not necessarily guarantee that the particles are f0110w1ng the
correct paths through phase space. A large time step can result in colliding
particles going too deep into a collision, He concluded that it is preferable
to incorporate higher time derivatives in a Verlet-like scheme than to use a
predictor-corrector algorithm (such as a 5th order Nordsieck-Gear algorithm)
for these stiff differential equations. = Dr. Toxvaerd then turned to Constant
Pressure Molecular Dynamics. There are a number of methods for achieving this.
The schemes of Andersen, Gilmore and Weeks, and Abrsham were mentioned. The

- Abraham method was criticised.. . It incorporates a Monte Carlo, MC, selection

' of a chdnge in volume Of the MD ‘cell size. . An acceptance of a volune ‘change

is determined by calculatlng the work performed on the system. = He claimed
that a term is missing in Abraham's treatment. A volume change in the MD cell
involves scaling the particle separations and also any inhomogeneities... The
~surface area of these regions changes and so a work term involving the surface
tension is required. The Abraham method as proposed tends to favour volume
. increases. This would induce premature melting at state points near phase
boundaries. . In the discussion Dr. Frenkel was not in agreement with Dr.
Toxvaerd's miodification of the Abraham method. . He said that a subtle distinction
between internal and external forces should be made.. . Although the actual
pressure in an interphase may differ from the 1mUOSed pressure the technlque
could still be valid. _ S o _

Three talks on the physical adsorption of: gases on SOlld surfaces followed.
DR. W. VAN MEGEN (Mélbourne Instituté of Technology, Australia) reported the
results of Grand Canonical Monte Carlo calculations modelling the absorption of
ethene on basal planes of graphite at high pressure in. the critical region, i.e.
T* » 1.12 and o* = 0.35. A 10:4:3 surface~gas interaction potential was used
to represent the effect of a structureless solid wall. The fluid was introduced
between two hard walls separated by approximately forty molecular diameters or o.
On varying the gas density, the surface excess density was found to peak at near
o = 0.35 or P* & 40 bar which is in good agreement with éxperiment. = An adsorbed
1llayer was evident even at the low dens1ty of p* =0.041. A trilayer forms at

o* = 0.19.  He showed that in the adsorption isotherms cusps can be obtained

u51ng 51mple model potentials. The discussion following this talk focussed on
the effect on the critical temperature, TZ, by truncating the LJ potential at
2.50.  Professor Rowlinson said that T* should be equal to 1.35 for the
untruncated potential. Professor PowlSs added that at this cut- -off, TF = 1.15.
Dr. Saville said that it was even lower, approximately 0.9, when a diffSrent
form of modified LJ potential was used in his molecular dynamics studies. There
the force goes to smoothly zero at the trumcation radius. This is equivalent to
making the pair potential shallower over the whole distance range. This causes



a much greater change on T as a result. Dr. Tildesley commented that as the
barrier to surface lateral translation is 30-40 K the effects of ridges and
valleys on the graphite surface are hardly llk@lV to be notlced at these operating
temperatures (-~ 100 K}.

DR. J.S. WHITEHMOUSE {Imperial College) spoke of 3-body effects in Krypton~
graphite adsorption. The paper was also authored by D. Nicholson and N.G.
Parsonage. In a well presented talk the results of a computer simulation study
of 722 model molecules above ‘an idealised graphite surface were shown.  Calculations
with and without a 3-body potential (well depth . 15 K) added to the usual 2-body
terms were performed. Two forms of adsorbed registry are possible. - The close
packed form is characterlsed by uncorrelated gas structure with the underlylng
solid, In the ep1tax1a1 ‘phase the gas molecules reside mostly in the centre of
the carbon hexagons. - The introduction of 3- -body forces destabilised both forms
of packing. This was demonstrated by impressive surface. déensity plots and a
decrease in second peak structure for the lateral pair distribution function.

In the discussion Dr. Frenkel recalled that a previocus two (x,y) dimensiocnal
MD' study incorporating a substrate with an (x,y) potential showed a tendency to
form an epltaxlal phase under similar conditions. He also pointed to the
possibility of ' domaln” phasos which' are 1ntermed1ate between close nacked and
epltaX1al llmltS _ ”_j e _._: ' by ban o

_ DRI DL TILDESLEY (Unlver51ty of Southampton) dlscussed the =b1ecu1ar
'Dynamlcs of Methane on Graphite. This paper was co-authored with E. Severin

- of Oxford University. - Bach model methane molécule interacted with 110 carbon

atoms on the surface. The well depth of interaction was equivalént to approx-
imately 1000 K. The internal énergy, and specific heat were followed as a
function of coverage. The structure and motion parallel to the surfaces were
monitored. At the operating temperature of . 100 K some methanes passed into
the vapour. This permitted enhanced re-orientational motion of the surface
molecules.: A-fascinating collective movement of molecules was observed in the
adsorbed monolayer. - Foltaxlal structure was not stable as the temperdature was
increased. Dr. Clarke: suggested thdt ‘an orientational cross= correlatlon function
could be useful in clarifying the origin of this collective motion. - Allen
suggested that phase transitions should be 1dent1f1able by large fluctuatlons
in the configurational potential energy.

" The first of two papers on the modelling of polymer molecules agalnst solid
" surfaces was given by DR. R.F.T. STEPTO of U. M.I.5.T. His paper on the effect
- of potential parametors on the configurational structure of adsorbed polymer
molecules was co-authored by D. Rigby and Aguchi. The model polymer chain
segments were confined to points on a ghost tetrahedral lattice. Local inter-
action parameters appropriate to pdlymethylene chainS'of up to 160 units were
chosen. A typical adsorption-energy was -0.5 kpl. * An adsorbed chain had
portions up to 10 segments long in direct Contact with the surface, called a
train, separated by loops and two tails at each end which generally point away
from the surface. = The mean thickness of the adsorbed layer was found to be

- determined by the tails. DR. M. LAL (Unilever) and co-author A.T. Clark

- investigated the configurational structure of chains confined between surfaces.
The MC technique is capable of enclosing all the possible configurations between

completely extended and coiled, using excluded volume criteria. Long chains
can be in contact with two surfaces at once. A train is attached to one surface
and the remainder on either side is in contact with the other surface. The two

comnecting strands spanning the two surfaces can come close to forming a "bridge'.
As the wall-chain attractions increase both surfaces are pulled together.
Interestingly, the mean train length is independent of this variation, for
entropy reasoens. Only the number of trains increases as a result. The
probability of bridge formation goes through a maximum during this variation.



The chain repels the’ walls for weak adsorption parameters;.- The walls attracted
for strong adsorption parameters. . Professor Powles encapsulated these two
effects in terms. of a 31mple etplanatlon using a ceiled and stretched elastic
band. S L S :

o The rem11n¢ng Lalks were. concerned w1th 1nterphases Composed of spherlcal

- molecules.. . PROFESSOR L.V. WOODCOCK (University of Amsterdam, The Netherlands)
expressed his. interest in the liguid-solid phase transition of simple molecules,

. He demonstrated that. two. hard.sphere phases can be produced. in- the: same MD cell,
with an intervening interphase.. The two co-existing phases rapidly. attain thermal-

- and mechanical equilibrium. - However, from simple rate of: evaporation considerations

. he showed that chemical equilibrium-is much slower: to achieve. - This was:
demonstrated over a lomg run of 2 million collisions during a- (lll) crystal-fluid
boundary calculation using 2000 particles.  Small changes in volume during the
equilibration indicated the slow relaxation time. In order to determine the
position of the solid-liquid tie line on a P*,p*) phase diagram he employed a
modification of Hoover and Ree's single occupancy method. There are still some
discrepancies with Hoover and Ree's values but the calculations have not yet been
completed. In the discussion, Dr. Saville commented- that for particles inter-
-». acting with soft interactions. the local temperature 1s a cood 1nd1cat0r of

= chemlcal equlllbrlum. e A R T

- The next speaker DR BUSHNELL WYE and co- author Dr J L. Flnney (Blrkbeck
afCollege) continued the above theme by performing MD calculations on the structure

o of equilibrium and melting Lennard-Jones crystal-melt interfaces.  The number

of particles, 860, included two movable crystal planes. . He showed localised
regions of great movement in the solid phase which presented a curved interface

- with the 11qu1d phase.. There appeared to be an 1nterpenetrat10n of solid-liquid
proflles Failure of a hard sphere model was demonstrated. . .

IR. S VI TTKEPSON'and3C0~author;Proféssor K.E. Gubbiﬁsf(cofﬁeillUnivérsity,

S0 ULS, A ). considered a Lennard-Jones drop.. . The calculations were performed on a
. PDP11/70 computer. ... A cluster roughly ten molecular diameters. across was created

by fitting the largest possible inscribed sphere in a cubic MD cell: fitted with

a 'LJ liquid and containing 864.particles. - Trapped. in-the sphere were: 454 particles.
The periodic boundary conditions were maintained but the box size was. expanded.
Within a short period approximately 10% of the molecules evaporated into the

... vapour-phase and.the cluster cooled to T* = 0.641 as a result.. Dr. Thompson

introduced the audience to. the fascinating. problems assoc1ated with obtaining
structural and thermodynamic radial profiles from the centre to the outer region
of the cluster. The radial comnonent of the pressure tensor decays monotonlcally
through. the drop.. The tangential component of the pressure showed poorer
statistics. In the discussion, Dr. Saville suggested that: the LJ triple point
could be lowered by the Z.5¢ truncatlon used. Problems associated with

. conservation of angular momentum were raised by Professor Powles and Mr. Walton.

+.. Dr. Parsonage suggested that the central region of the droplet: could have solidified

although in the outer region it could still be in a liquid state. .

.~ DR.. G. JACUCCI {University of Trento, Italy) presented results of Monte Carlo
calculations of the free energy of clusters in the Ising Model.  His fellow authors
were G. Martin and A. Perini of the Centre d'Etudes Nucleaires Gif sur Yvette,
France. = A capillary theory cast entirely in terms of bulk properties was used
to predict the free energy and nucleation rate. In addition, the overlapming
distribution method was used to obtain the free energies by Monte Carlo simulation.
The number of moves per particle was 250,000. Excellent agreement between the
two approaches was obtained.



DR. D. FRENKEL (University of Utrecht, The Netherlands) enthusiastically
presented a review of the theories of melting in two dimensions.  There is still
uncertainty as to the order of this phase transition.. According to the Kosterlitiz-
Thouless, KT, theory the solid melts in a second order manner via a so-called
hexatic £luid phase which is characterised by translational disorder but.
orientational order of the molecular centre of masses. The solid is itself
interesting. in that it possesses no long range. translational order. - It is
necessary to characterise each phase in terms:of an order: parameter - The KT
model involves a continuum with dislocations called disclinations. _Y—ray
scattering from'a: layer of liquid crystal has'given some- ev1dence:f0r:a hexatropic
to isotropic transition near the melting temperature.. However, ‘even with
computer génerated orientational correlation functions it.is still-a possibility
that melting is: first order.. A LJ sample is slow to relax near its melting
temperature even with several million MC moves... There is also an undetermined
N- dependence . S = : o L

MR, N. ANASTASIOU (Royal Polloway College) gave the flrst of a series of
talks on ionic interfaces. . He was interested in the (100) alkali halide -
liquid water interface. A Molecular Dynamics simulation of 432 alkali halide
~ilons (36 per layer). and 216 water molecules were performed. A 4 psec: simulation
of the water molecules against a rigid crystal (to represent an- insoluble salt)
showed that the molecules attach strongly to surface sodium ions. - .The: oxygens
point towards the sodium ions and the hydrogens attempt to attach themselves to
the surface chloride ions, witnh a resulting 1™ decrease in the HOH angle. Also,

.. evidence was presented for long range correlations of water dipoles-away: from the

o surface into the bulk liquid.: An almost complete absence of water self-diffusion
was observed in the surface layer. - This contrasts markedly with the results

of Dr. Bushnell-Wye for the [J solid-liquid:interphase, in which surface diffusion
was found to be not too different from the bulk liquid. . The sodium ioris rapidly
go into solution when the:ions are allowed to move. Significant surface
destruction was evident within 0.5 ps. The water molecules enter the vacancies
created. . The rate of dissolution decreases considerably: after Z.5 ps.
Significantly at these later stages, a Cl - is the only. ion to have entered far
into the bulk water (because of its poorer degree of solvation?). = The present-
ation received a warm response from the audience.. However, there was. some

. misunderstanding over the use o£ perlodlc boundary condltlons perpendlcular to

- the surfaces : _ . . e S e

s DR R G LIVFORD (Lolcoster Po]vtechnlc] and hlS co- authors PifWillimns,
‘ R W J. Cotterill and P.R. Couchman are interested in solid electrolytes'in a

compacted powder form at 500 MPa.  In order to determine the role of interfaces
in their behaviour a MD simulation of the combination of two LJ clusters was

performed.. = The results were unfortunately.preliminary and only partial

- coalescence had occurred within the 1000 time steps performed -

DR.. J Py VALLEAU (Unlver51ty of Toronte Canada) rev1ewed electrlcal double
layer phenomena in ionic selutions. . This. 15 a difficult region to investigate
experimentally by diffraction techniques as the interphase is thin and the
ionic concentration so low. This is unfortunate as they are important in
nature - stabilising colloids and membranes. Computer simulations of this system
usually employ the charged hard sphere model (R.P.M.). . The Guoy-Chapman {GC)
solution of this system and the exact Grand canonical ensmble MC calculations
agree well for low valence electrolytes (better for the charge density profile than
the interfacial potential though). At 1 M concentration for a 1:1 electrolyte
bilayering near the electrode becomes evident. The agreement with the GC theory
is not goad for multivalent electrolytes.  This was attributed to the poor



treatment of the long range charge fluctuations in the both models. Interestingly
a 3:3 solution approaches the Helmholtz-Perrin parallel plate capacitor limit.

The inclusion of image charges, a local dielectric constant and differential
capacity were discussed. Dr. Weeks made a comment about the shortage of
interphasial water molecules in the concentrated solutions.  The ions would not
have enough water molecules to solvate them. Dr. Heyes queried the need for

long range electrostatic corrections for these dilute solutions. Dr. Valleau
assured the audience that the contribution to the potential from beyond the

nearest 1magos could be many tlmes KET

The meetlng was concluded bv DR D M HEYES (Royal Holloway College) who
reported the results of a D study of molten salt films trapped between two
infinite smooth hard walls. These calculations were rerformed in co-operation
with J.H.R. Clarke. In some simulations:an equal and opposite continuous
charge density was added to each wall.  The application of an electric field
across the cell produced significant charge multilayering in agreement with
accepted theorles.  Interestingly, the average density profile pervendicular
to the surface hardly differed between calculations with and without an applied
external electric field.  Thermodynamic profiles, surface tension and multi-
layer capacitance were. discussed.. Dr. Parsonage asked about the method of
treating the long range coulemb forces. Dr. Heyes replied that an Ewald-like
expression was used appropriate to ner10d1c1ty in two dimensions cnly. Dr.
Sluckin said there were:theoretical reasons for predicting that average charge
densities are unaffected by external electric fields, if the two_species share
" the same soft force characterlstlcs

e A B ke 5k ok o e e e o e e b el o e



Questions and Answers about'Moleoslsr D§ﬁamicshon'the:DAP

by

L Dav1d Flnoham S ;
DAP Support Unit, Queen Wary College

What is the DAP°

The Distributed Array Processor lS a new type of computlng dev1ce

produoed by ICL I oonslsts of 4096 processors arranged as a: 6ﬂx6u
'”array, each processor being capable of performlng S1ngle blt arithmetlc
operatlons. The processors operate smmulbaneously, executlng the same
instruction on their own data. ' To pPOVlde more flexlblllty eaoh
processor has an activity register, under program oontrol which means
that in effect it is either T'on' or 'off' for any particular
instruction. The store associated with each processor consists of 8096
bits, making 2 Mbytes in total. (An 8 Mbyte version is also available).
The whole device formg a specialised store module of a 2900 series ICL
computer, so that the processzing power 1s distributed into the store,
avoiding problems of c¢ommunication between main store and separate
processing units which can degrade the performance of more conventional

computers.

How is the DAP programmed?

The DAP is programmed in DAP Fortran, which is a version of Fortran
with extensions for expressing parallel operations on matrices and
vectors. For example, two matrices can be added with a single
statement, rather than a double DO locop as in traditional Fortran.
There are various methods of performing indexing operations, a
particularly wvaluable one being the use of a logical expression in
place of subscripts as a method of contrelling the activity of the
processors. These features result in a very simple, elegant and
flexible language: most users describe it as 'fun'. Similar array-

processing extensions will appear in the next ANSI Fortran standard.



What problems are suitable for the DAP?

Te be suitable for the DAP a problem. must  satify two conditions.
First, it must have - a high degree of parallelism, s¢ that many
logically independent operations can. be performed. simultaneously. This
sounds rather restrictive, but in. fact parallelism is intrinsic to many
problems, though the programmer. may not be aware. of 1t because he has
previously been. limited teo. algorithms: expressed in:strictly sequential

languages. Second, for . efficient utilisation: of the DAP the problem

. must be mapped in some way onto a 6Ux64  array (which can alsc be

regarded as a vector of 40396 elements). Thus the programmer must be

. aware of and able to expleoit the architecture of the computer.. It has

always been. true that users working with number-crunching problems at
the 1limit of  available computer power have had to do this to some

extent.

I5 the DAP suitable: for MD. calculations?

Yes. Each step of an MD simulation consists of two essential parts, the
force evaluation and the integration of the equations of motion. The
starting point. of the step i3 a set. of coordinates, three Cartesian
components for. each of the N partieles, forming three 'vectors' of
length N. In a simple MD.prograzm these are used to form the set of
pair separations which can be regarded as. an antisymmetric NxN matrix.
From these. are . calculated the matrix . of - pair. forces,. and this
evaluation is entirely parallel in nature, that 1is, it can be performed
simultanecusly for each pair. The pair forces are. summed tc give a
vector of total forces, one for each of the N particles. The equations
of motion of the particles can then be integrated, which again may be
done in parallel. To use the DAP most efficiently the wvalue of N
should be a multiple of 64, 256 being a commonly used number for liquid
simulations. If larger systems are to be: studied some kind of 1list
technique tc avoid considering all pairs in the system, is advantageous
as on other computers [1]. The neighbourhood. list technique has been
implemented on the DAP by Steve McQueen of ICL. He uses a logical mask
rather than an actual list of indices; on the DAP logicals are single
bit quantities so the storage problems which have made the technique
unpopular on the 7600 do not arise. . The in-range interactions then
need to be 'packed' onte the DAP in 64x64 blocks. (& process akin to
the GATHER operation on the Cray [21). Other techniques are being

investigated and I hope to report on these in a future article.



How does Lthe DAP compare with the Cray? . ...

Since some of the readers of this Newslefter are familiar with the Cray
it is worth comparing the two machines. The Cray works by pipelining,
that 1s overlapping, arithmetic operationa in. one fleoating point
processor, rather.  than performing them - simultaneously. - in many
processors. However, Lo be overlapped the operations must. be logically
independent =and sc. in principle capable -of parallel processing, and
thus algorithms for the two machines ftend to be siwilar. 0On the Cray
the performance is fairly independent of the wvector length, whereas in
the DAP blocks of data of size 4096 give maximum efficiency.. In other
respects the DAP is more flexible and easier to program. The indexing
techniques can be  used Lo handle ceonditiconals, whereas. these are
difficult on the Cray, the only posaibility being the choice of one out
of two numerical values depending on the sign of a third. . On. the Cray
also the common operation of summing the elements of a vector doesg not
"vecborise', while the bit~serial arithmetic on the DAP makes it a very
rapid operation. {(The bit serial. arithmetic has ofher surprising
effects, for example. SQRT is faster than multiplyl). Cverall for
flcating point arithmetic the performance of the DAP lies between that
of the CDC 7600 and the Cray. It should be remembered that the Cray-1

. 1s a szeparate mulil-million pound: computer, whereas the DAP is an order

of magnitude cheaper. 1In fact; sinece it provides additionzl storage on
the ICL compubter to which it is attached at little greater cost than
straight storage alone 1% can be regarded as almost free by comparison
with the Cray.

Can I use the DAP? -« ..
The first production DAP has been installed at Queen Mary College and

i8 regarded by the Computer Board as a national facility for parallel
processing. Communications with the 2980 computer which acts as 'host!
to the DAP 1is possible via PSS, Metronet or SERC net. Anyone
interested is using the DAP for MD calculations is invited to contact
me in the first instance, theough the use of substantial amounts of time
requires a formal application to the SERC. The DAP Support Unit exists
to give advice, aasistance and eduction for users, and alsc to provide
software. I plan to make available a fairly general purpose MD program
for handling rigid polyatomic moleculez with interactions of the site-
site form; and perhaps to extend this to include coustant pressure

dynamics, point quadrupcles and fractional charges with Ewald sum.

Lo
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How accurate should we make our MD calculations?

by

David Fincham
DAP Support Unit, Queen Mary College.

Can anyone anawer this questicn? In a molecular dynamics simulation errors
in the trajectories of the particles arise because of the of the use of a
non-infinitesimal time step and through rounding. We moniter the errors by
checking the conservation of total energy, and I use a rule of thumb which
states that the fluctuations in total energy should not be more than a few
percent of the fluctuations in kinetic snergy. But I don't know where 1t
comes from or how many percent are allowable. Thiz is an important
question, because if we can double ocur timestep we can sample phase space
twice az efficiently and halve our computer time. Simple algorithms like
the leapfrog give rise tg errors that increase fairly steadily as the time-
step is increased, whereas higher order algorithms can be more accurate at
small time steps but become unstable when the time-step is increased.
Which should we use? We need to know how the errors in the trajectories
feed through into the properties we measure in the simulated system, and
this presumably depends on what property we are studying. Does anyone KkKnow
of a systematic investigation, elther thecretical or practical, into this
guestion? And if it hasn't been done, is this not the sort of thing bthat
CCP5 should be doing?

12
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POINT MULTIPOLES IN THE EWALD SUMMATTION

W. Smith

Preamble

The purpoze of this paper is to ocutline one possible:treafment;of point
multipoles in an Ewald Summation. A point multipoié in this.application
is considered to consist of a superimposed point charge, point dipole and
point quadrupecla; as might be obtained from an arbitrary charge distribu=-

tion resolved into these components. The physical gquantities described . -

are the potential, force and torque experienced by a point multipole in . .

an infinite system of repeating unit cells containing irregqularly spaced

multipoles,

The Multipole Operators

Taylor's expansion for a scalar function of several variables

(i.e. Flxy, %2, X3, «.a) ox Flx)) may be written as:

F(r + &r) = F(x) + §£ﬂf?§£) + Q:LEE]FQE) + ... Btc. . {1)

Where the matrix U is defined by Uij = 1/221xj etc.

and the matrix [VV] is defined by [VV], 6 = 2 etc.
—— ij Qxiaxj

The operation indicated as : is the dyadic scalar product of the matrices
(i.e. A:B = A1;B11 + Aj2B12 + ... ete.).  (The terms of the series (1)
can be regarded as a series consisting of consecutive contractions of

tensors of rank 0,1,2, ... ate., to giﬁe a scalar result.)

The electrostatic potential at a point z due to a multipole at the origin
and consisting of n point charges at the points ££k} is given by (2).

(Where the wvectors Iy specify the positions of the charges D with reg-
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pect to the adopted origin of the maltipole, Tor ocur purposes the adopt-
ed origin may be taken as the centre of the charge distributicon. The
position of the multipole in space is thus regarded as the position of
its adopted centre.)

1 “k

vir) = dmeg k£1 I ' {2y

If we agssume that the spatial size of the multipole is WmihGte in relation -

te r (iie. © > rk) we may use Taylor's expansion of 1/r with (2) to
obtain the following expression for V(x) {in which we ignore contribu-:

ticns above quadrupole).

Vir) = —— [c .'.a..”\?a-ga:[vl'v]}

' 1
dreg a —a — = r
n
Where: ¢ = [ g, is the multipole net charge
a k
k=1
n
= E . .- - I v
ga - q.x, is the multipeole net dipole
n _ A o
Q = I q. U is the multipole net quadrupole
=2l =1 k=K

If we define the terms in the brackets of {(3) t& be an operator M we may
rewrite (3} as:

From which we see that the potential due to a point multipole is obtained
by applying the cperator Ma to the expression describing the potential

due to a unit positive chargs.

By a similar reasoning we may deduce that the potential ¢b of a second
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point multipole due to the potential field V(r) of the first, is given

by:
¢b = Mb Vi{r} {or MbMa(4ﬂ€Or) ) {5}
Where M, = ¢+ d..V+ 9 : (V7] [ - : S (6}

The force acting on the second multipole will be given by applying the
oparator - j% to the expression (3) in the usual manner. Thus

A

- = ; -1 A
Fy ijbMa(ﬁeragr) (7)

The torgue acting on the second multipole in the poteéntial field of the

first may be written as:

n . e
=~ I q r X Wir + ) o _ (8)

S I

From which we may deduce that -

~

and so obtain the torque operator Lb as:

T

(The operation implied by * is a vector product of the matrices on either

side; according to the recipeﬁ
If ¥V = A*B then for matrices of dimension 3

{a

, B, ., - A, B, !
41,3 142,73 i+2,3 l+1rj}

<
It
1 opq 3

Where the indices follow a cyclic progresgion (i.e. if i=2 then i+1 53,

i+2321, If i=3 then i+1=1, i+222 ete.])
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The Ewald Summation

The potential at a point xr (not at a lattice site) in an infinite period-

1,2

ic lattice of unit point charges is given by the Ewald Summation'sr < as:-
‘1 [= ] I 1 o
V_(r) = I La expl-ik.{z, - r)) + Eeglle., - z|) (12)
E.-... K [ —_— € —_— Eaiy ] Cre
VpEgp K#0 k g 4TER 5 j 3 _
where FH( = exp(—kz/ci a?) k2
Bolu) = erfelaul/u
n = number of point charges in unit cell
o = Ewald's convergence parameter
Vg = volumeé of unit cell
k = reciprocal lattice vector (e.g. k = o (na,nb,nc) for
a cubic system '
k = index of k vector

According to the princ¢iples outlined in the previous section we may adapt
equation {12) to suit a lattice of point multipoles by applying the set

-~

of operators Mj defined by:

M, =c. - d,.V+ Q. :[7V] N T ey
3o St R — -

Following this prescription we obtain the expression

o n . ) .
1 _ . ST
Vir) =V0€0 kvfo Z (cj - 1§j.£ - gj:[}_clc_])Akexp(—:LE. {E-j -}
J .
1 o
* Tve jZ (c.Bollr., - x]) - (4 (Ej - x) + %:;)Bl(lgj - i)
+Q:J:I{rj - x)(x, - ryBallz, - i)} (14)
Where :[kk] is a matrix formed from the products kikj etc. [(Ej-—_i;_) (Ej"f-)]

is a matrix formed from the products (xj—x)(yj—y) etc.
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B](|£j - i) "'B£(|£j - r|) are a series of functions derived from

Bgf'ﬁj - r|) according to the recursion relation:
(22"

a¥n

B (w) = [(22- 18, _(a) + expl=oZuZ)} .. (15)
) .2 : -1 . . S . _

Further important properties of the functions B£(|£5 - z|) are given in

the appendix.

Bgquation (14) describes the potential field due to a lattice of point

miltipoles. The potential energy of a 'guest' multipole at position r is

given by applying the operator Mé to equation (14) where:
M o=c +d .7+ Q77 T e
g g - — == -

The result of this operation'ﬁeingi'

4

19

1 1
= T AR . expl-ik.{x., - r)) + E LB, (lr, - xlie,,
g Voeg K0 3 Ak kKig ] dmney =0 3 2= %

(17)
Where the fﬁﬁcfibnsﬁak anﬁIBiIHavé already been described. The functions
F . and G,, are as follows:
kjg Lig

e o (e i . ;..r:.:x '.L “:f ;:;:_':;:--: Lo .Hj..
g (cg F ;ﬁg k gg [EEJ)<CJ lgj X gj [EE]? o s 8}
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oig

lig

2jg

33g

439

= ¢ c,
g3
= gg.(gj “lglc] ~ éj'(gﬁ”"'zjcé - gé:ﬁcj'— gj:gcg.+'g§agj'
= gg:[(rj - ilx, - x)le, + gj.[(r - xMx, - r}]cg
-d . dr., - x)d .{x, - x) + 29 :{d. {r. - r)l
-3 ] -3 ] =g .
- 2Q.: - . - 1T - A, - Lt
gj [ggfr r)l +d (rJ E}gg I-d (Ej 5)23 L
+ 2 . Io.:1
Q‘g _—Qsj + Qg =gj =
" gyt - 008 i - Dg - D] - gy - 0l -0y - o)
- 4gg:[(5_j - 5)(gj.(5_j ~xr))]
- gg:i_g_j:ifg_j - gjfgd - xr}] - Qj’ﬁngF(r - r}(r3 “.E)?
= gg:[(gj - riz, - )9, [(Ej - ){r, - )l

In the usual situation we wish to evaluate the potential, not of a guest

}(19)

multipole, but of one of the multipoles at a lattice site. We can adapt

the formulae (17) to (19} to this circumstance in the following way.

(1) We must extract from the equation (17) all those terms involving

{ii)

If we now examine the terms separated out from (17) according to

both the guest mulﬁipdle (indéx 'gf) ananthénmultipéle at the
lattice site of interest (index 'i'). These terms will call for
special treatment later.

to index

In the other terms we simply set the index 'g' 'i' and

replace r by Ei' Thus as far as these terms are concerned, the

guest maltipole and the 'i™H' muitipole are one and the same.

(1)
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ahove, it is clear that if we are to regard the gquest multipole as being
the 'ith' multipole, then these terms represent a 'self-interaction’
energy, which physically is zero, but mathemafically is indetermihéte.
We may choose simply to exclude these terms from our summation (i.e. set
them fb zéfo) but cﬁmpufationally it is moré.convenient £6.§£QCeed :

otherwise.

If we consider the second group of terms on the right of equation {17). ..

and obtain those terms in which both indices 'i' and 'g' appear we will.

have

4 O
Eomgley =xbogye 0 e

ameg 2=0

It is.cie%r.fféﬁ.tﬁé”aefinitiﬁﬁ.of the Eunéfidﬁé”ﬁétui.iﬁ.éqﬁééions {125
and (15) that this term becomes indeterminate when we equate E'and.Ei.
If however we expand these functions as polynomials in the argument u
{see Appendix) we obtain in place of (20):

Mo
’ G

1 g . )
b + G,, 0,(u) {21)
7€ gm0 22:22 p2¥*1 (22+1) ant/2 Mg 4

4 ((22): G (20?)

Where Ozfu) represents a sum of terms in u and higher powers of u.

If we now examine the first term of the expansion (21) we are able to
equate this term with the conventional (or non-Ewald) description of the.

potential energy function of two multipoles separated by a distance u, -

As u tends to zero {(i.e., as X and r merge) it is this term that becomes .

indeterminate. Because of its identity with the conventional potential
expression we may siwmply remove this term altogether (knowing it to be -

pnysically zere). We also see that the terms Og(u) necesgarily become
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zero as u tends to zero. Thus the only surviving term is:

41
1 a  (2a%) G

40 0 (28k1daml/2 -

Aii

(225

Two further comments are in order, Firstly it can be seen from the iden-

tities (19) that within the GE"
ii

.functions themselveé hény of the Eerms
are zero pecause of their dependence on (Ei - E)r which is zero in tﬁis
circumstance. Secondly, because of the identification of the first texm
of the axpansion (21) with the conventional potential energy expression;
we can be sure that the term (22} represents a complete correction of
equation (17) to the case where the guest multipole is at a lattice site.
(Note that this also means that we may simply use the index substiﬁﬁﬁion
'g' + 'i' in the Pourier camponent of (17) without further complication.)

Thus we may write:

< n

1
.= L LAF ..expl-ik.{r. = r.))
¢.1. VgeEg KH kK kji FPATIE - —i
1 4 s
—— I E B ( r - r.1)G,.. ¥+ ¢C {23)
4MV0E0 un 5% 2 -—ll 231 L

Where the constant ¢ may be derived from (22) and is:

e I e e
C c. %+ 2u {3 (2Qi.gc. + d Y} + —~— g i + (21'£] )

k3

gnd/2¢
(24)"

It is worth noting at this point that if all the dipoles and quadrupoles’

are set to zero, this expressicn will reduce to standard Ewald form for a.
lattice of point changeslfz. Also if the charges and guadrupoles are set
to zero, the result is the Kornfeld expression for a lattice of point

dipoles. as described by Adams and McDonald®, The proof of these state—

ments is left as an exercise for the intrepid reader.
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The force acting on the 'ith' myitipole in a lattice of multipoles is

obtained by applying the opefator - j; to equation (23}). The result is:

-1 : e S .
£ L ikA F, ., -ik. P
Ey V0% o : ikA, kJlexp( ik. (x r.})

]
- z L G,..B (lr. - r. |Yx, ~z) +8B,(e, -z, |) VG,
4TEQ 94=0 §#i B317 A+t 2 i J i £ 1 1 i 231
(25)
Where the functions Ak, iji’ Giji and B2 have been encountered already.
The vector functions jiszi However, are as follows:
\
V.G =0
=17 991
V.3 = c,d, - e.4d,
=141 i I
K == 2¢,Q0..0r, - r,) - 2c.Q..(r, - r.)
—i7 244 195155 T Ly 39018y T Eg
+d,.{r, ~r.)d, +d..(r, - r, )4,
o T B R I R B e
+ 20..4, + - 20..d. - Q.:Id.
Ve o o=Qellr, - r Mz, - r)ld, +2d..(r, ~ . )Q..{r, - r) (26}
—i734; #T i = dye (g = 2080 12y =i e
= gj:[(r:l - e, -rola, - 2gi.(£j -~ ;:_iJg].(rj - )

V.G = - 22':[(£ﬂ - Ei){ff ]

ey l\‘ji i ‘Ei)lg.-(r. -

r,
=T =

- 29 :{(r, - 5_]._)(5_j - Ei)]gi'(zj - r.}

=] 73 4 o )

To determine the torque acting on a point multipole at a lattice site, we

21
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~

mist apply an operator Li analogous to that presented in (10) to the
potential field equation given in (14) and proceed in a similar manner to

that which produced the result (23). In this case however the result is:

o n ’
1
= L LaPF .. expl-ike(r, - xr }}
—i VgeEqQ x#0 3 _k—kjl 3 1
+ £ I B, (|lx. -, 1)G,.. (27)
ameq o 3% 1) ]—j —1I‘—le

Where Ak and Bﬂ are the same functions as in the pfevious formulae. Ekji

however are now vector functions of the following forms:

and Sy
Fegy = (~id. X k + 2gi*[k_k])(cj - igj._k_ - gj: (kxx 1) (28)
N
G =~d. X (zr, - r, e, -4, X 4.
19 ~i =3 i3 -t =]
G  =-20%[{r, - £ r, ~r.)Jc. +d, X (r. = r,)d..(£. - r.)
=241 =S S At B e I s B S
- 291*[9ﬁ(£j - Ei)l - 2%*[(5j - Ei}gﬁ]
) - - _ *
+24, X gj.(_r_j r,) +4, X (Ej E_i)gj.g 42, gj
geji = -4, X (Ej - Ei)gj:[(gj - Ei}(Ej -xr e 2_:}_]..(_15_j - r &(29)
[(5j - E&)(Ej - x )]
+ 4_g_i*([(£j —-Ei)(gj‘(ij - xi)l o+ [[gj'(l{j —-_g_i))(gj -~ xr)
+ 2%*[(5}. - _gi)(gj - Ei”gj‘i
gﬁji = - 221*[(£ﬁ —_:i)(rj - Eﬁ}]gj‘{(zﬁ - Ei){fj - x)d

J

It may be safely assumed from the complicated nature of these formulae,

that these equations are difficult to program in an efficient manner.
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However, it should be pointed out that the Fourief.ééﬁpaﬁénté df”thé'.'n
fermulae presented above are particularly elegant and straightforward. and..
are little more difficult to program than would be the case in a system
contaihing point charges only. Also, despite the cuﬁﬁéféaﬁé ﬁaturé AE
the terms derived from the original complementary error function (i.e.
the terms invelwving the E'-2 functiéns) tﬁé?zare n;Jmoré diffiéuit tdnéfo—

gram than would be the case if the direct summaticn method were emploved,

provided that the Bg functions are generatad via the recursion relation

(15). A primitive version of a program using these formulae is available

from the author at Daresbury Laboratory.
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Appendix: The B, Functions

%

We begin with the function Bg{u):
; o e o S
Bglu) = 3 erfo{a) _ (a)

Where: erxfc{ou) = 2 /
g2 g

éxp.(.ﬂ- Szlds o _ | _ (b}

We may also define the recursion relation:

242 '
B (w =1= {22~ D, o+ EELT e w22} (1> 0 (o)
: =1 anl/2

=5 Xl
then it is easily shown that;

1f we define u = |xr. - x| = [((xj)l -2+ ({xj}z - k)% ((leg -~ 23)2}1/2,

9

3;; Bz(u) = ((xj)r - xr}Bz+l(u) (r = 1,2,3)
32
"‘a"‘x";a;; BE'(U) = ((xj)r - xr)((xj)s - KS)B£+2(L'I}
Grst,H(u} o {r,ei= 1,2,3)
(d)
From which we obtain:
—VBR(u) = (Ej - E)Bgﬂ(u)
. _ . . _
{_V]Bi(u) [(g_j 5)(% 5_)182+2(u) £B£+1(u)
(el
These relationships are used throughout the deriwvations {14) to (29) of

the previous sections.

To cbtain the expansion (21) of the expression (20) we use the Eollowing

series expansions:
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J{ote)?  (a)? (o) ®
3 10 42

()b (a8
2 3 24

o .
expl= a®u2) = 1 ~ {an)? & <811

(ou)® _
216 . - '°°

{(£f)

Combining the expansions (£) in the recursion relation (¢) and collecting

terms thliﬁé”béwéfs'iﬁ:u allows ﬁhé:fdiioﬁiﬁg expansions of 5£(u5”to be

produced.

Bglu}

1}

B =L -

i)
-

=

{t

v}
[
|
I

etc. Or in general: ~

o gy ey
Bz(u) = i
2!2_u2_ .

+70(u)
(28+1) ant/2

where 0(u) are collected terms of powers of u (ive. ul with a » 1).

25



Apparent Energy Conservation .

A.R. Tindell, D.J. Tildesley and J, Walton

| One_of the constant_concerns of a mo1ecu1ar dynamic is_his
énefgy.conservdinH. Néw_prdérams rare]y cohsérvé énefgy éﬁd in
nine:out of ten césés:thié ﬁi11 be 2z pfogramming.érroruﬁﬁich céi]s
for prolonged staring. There is an unhappy moment when a11.fﬁe
apparent bugs have been removed and the 1nternaT'energy stilt fluctuates,
One possibility is that the differential equations are too stiff and
the choice of algorithm is 1nappropr1a£é. Iflfhis is the case energy
conservation normally improves as the timestép is reduced. A more
Tikely cause is that all the relevant contributions to the total
energy have not been included. We recently came across an interesting

example of the latter probliem.

We were developing a program to simulate Lenngrd-donesium
in the gas-liquid interface. To begin the project we wrote a simple
program to simulate 256 LJ atoms in the bulk liquid, As is our wont
we used a fifth-order predictor;ébfréétéf method and an inte}action
cut~off of 2.5q. We were parti;u1ar1yuconcgrned about energy
conservation since we planned long runs in the interface. The program
seemed to run well but the energy fluctuation, 1 part in 1200, was too
large for comfort. For this system Verlet claims an energy conservation
of 1 part in 107(Ver1et, 1967) and although we had never seen the energy
this steady we were anxiocus to try and reproduce the result. We cobtained
little improvement by reducing the fimestep and increasing the cut-off
to 3¢ and we wondered if the Teapfrog algorithm was intrinsically more

accurate than the Gear method. The problem was eventually traced to the



definition of the potential. The force on a particle i from its

neighbour j is defined by

12 6 1
fir) = 485[( J O 5 —7—)] r‘ij < r.-c. .
f{r) =0 >r . (1)

There is a small discontinuity at the cut-off, if re = 2.5¢ this is
0.039 o\, which is Tess than 2% of the well-depth in the force.

The potential aﬁ”kgj is minus the force integrated from infinity to

]2 b - .
)_._(§ )1 T3 <rc,{2)

¢ el

..
ij?

I 12 6
4 . .
o Uir 13)_ E[(r._) ___ ] _48[(r
: This-is=the”simu1ation‘potentia1;-the”hOrma1'ULJ9b1us“a'Sma13 constant
correction. This means that any time-step the internal energy is given

- fJ% Nc kT +:?i5.1.ULJ‘(rijl-- NC(NCjT ])'fULJ%(rc) (3}

<r
'IJ C

where NC is the number of atoms in the cut-off sphere. It is this
quahtity which s COnsérved and'sihée N, dectﬁates,'fai]ure to include
the third term in (3) distorts the real energy conservation. The
improvement obtained by including the third term as a correction is

shown in table 1. These remarks apply equally to simulations of molecular
Tiquids with discontinugus cut~offs in the force. Even when re is taken
as half the box-Tength NC can still fluctuate. The problem will not
occur if we use the minimum image method and include alil interacticns in

the basic cube since the last term in (3) is th=2y:a constant, bit this

will nearly double the number of interactions which have to be considered
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explicitly and this is prohibitively expensive,

Cut-off Corrected Conservation? S T U P

2.50 No 1 part in 1200 )
) 1,05 -4.52 -0.05
2.5 Yes 1 part in 300000 )
3.00 No 1 part in 1700 % |
. T T e . 1,02 -4.53 ~0.11
3.00¢ Yes [ part in 500000 ]

TABLE 71: A simulaticn of Lennard-Jonesium, (p* = (0.650), timestep,
(0,863 x 10'145).' The figures for energy conservation represent the
total spread in energies based on timesteps 2500 ~ 2600 after equili-
bration. The thermodynamic properties after 3000 timesteps include
the long range corrections. All simulationsare started from the same
point in phase space and equilibrated for 1300 timesteps. (note that
micro- fiche copies of the results are available on request).

These problems can be avoided by using a shifted force potential

(Streett et al.1978) defined by

e

Ulrs ) = Upglrgg) =Ulrgdrgy + Uy glrdrg = Ul e

ij ghN

This kind of potential has a force that goes to zero at-rc, {although
it does have a regulation cusp at this point). For those who have
simulated with the first term in (2} the energy conservation is prebably

better than it Tooks.

Those who believe that snipping at 2.5¢ can have very little

effect on properties of interest will remember that the critical temperature
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of Lennard Joneswum.has been estimated at T 1 32 ? 1 36, (Barker

nd Henderson 19?6) At the last CCPS meet1ng on 1nterfaces a number
of esttmates were g1ven for the cr1t1ca1 temperature ef truncated
_ Lennard Jone51um none of these were over T 1 2 and for a potential
N wh1ch had been cut and sh1fted at 2 55 there was an est1mate of T = 0,99,
.(Sav111e, 1982) _ It has aTso been known for some t1me that the densitfes
of the coex1st1ng 11qu1d and gas depend on the truncat10n of the potential

(Lee et qZ 79?4)

I we include a11 the contributions to the internal energy
then; in’ the case of an atomic fluid, we might expect time-step to
time-=step conservation of enérgy of better than 1 part in 105, (for
the Gear method).  In the case of a molecular fluid there is an
additional problem. Imagine simulating a quadrupolar fluid with a
- minimum- image caonvéntion. During a time-step molecule 2 crosses the

boundary and 2' enters through the opposite face.

ff'the'neiatiﬁe'dntentations of md1ecu1es.1'and 2'are.e1, @2 then the

relative orientations of 1 and'2’ are 61 - 20 and @, =~ 2a. Now U

| 2 00919
does not equal UQQ(G1 - 20, 9y = 2¢) unless « = 0, or 0 +9, = nm + 2a}

29



(n =0, or 1), and there will be a small jump in energy of order
{3‘2(0.5{.)"5 during the crossing. For a medel of liquid nitrogen, (256
3 pote”]

molectles, 33.85 <in ) we estimate that this energy jump will be

of order'i'bdﬁf ih 10% of the total energy, (allowing ten particles to
cross a boundary at each time-step). Energy would the be conserved

at the level of 1 part in 10° which is the general experience with this
kind of system. In the case of fluids of dipolar molecules the energy
jump 1< of order uZ(G;SL)'3}' For small systems the fluctuations

caused by the boundary crossing may well be visible at the level of

1 part in ]05.,_(Adams et al. 1979; Impey, 1982). In the case of
a_dipolar_mo1ecu1e,zw1th no symmetry plane perpendicular to the

~ molecular axis, the jump in energy may be more pronounced since the
interaction falls off as r_s; energy is still conserved at « = 0, but
many of the other relative orientations which conserve for quadrupoles

do not for dipq]es.__These small fluctuations in_the total energy will
mean that properties such as the specific heat, whi;h,is measured by
monitering fluctuations in the.kinetic energy, are difficult to calculate
accurately. For-a simulation of water jt_may be necessary to abandon

the minimum imagé EoﬁVehfion for the EQJTdfsUm not just for collective
correlation functions but t0 mainta1n a sufficiently high standard of

energy conservation throughbut the simulation (Impey, 1982).

In the case where the multipoles are modelled by partial charges,
rather than idealiZed point moments, we héve to consider what happens
when a molecule lies across a boundary. In this case one of the charges
will be outside the box. If we consider the minimum image of this
tharge, the central molecule will think dtself surrounded by charged
jons at approximately half the box length. This preoblem can be avoided

by always using a centre of mass cut-off for models with partial charges,
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Finally, although we Used the same time-step as Verlet, (1967),
in our simulaticon of atoms we never found the energy constant to 1 part
in 107 so it is possible that leap-frog algorithms are slightly more stable

than predictor-corrector techniques for the simulations of ltiquids.
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Constant Pressure Molecular D?namics for Poiyatomiés

D. Brown

‘The equations relatirg absolite to scaled coordinates from reference [1]

are:~- .
v o= sd (1)
=R V3 ST )
1 ~1
R, - p/m 4 (R /) & vy
=i =i =i dt .
=} 1/3 SN e 4
Bi/mg =2y v (4)
where: V = value of MD cell. .-

s = side length of MD cell

= position of i*h molecule centre-of-mass

—i,

Ly = scaled position if ith molecule centre~of-mass
p, = momentum of 1th polecule

'ﬁi'= mass of ith molecule :

and the equations'of motion are:-

= y-1/3 - :
B =V E/m - 2B T/0GW) )

<3
1]

-1 _
M (Pcal Preq) (6)

where: M is the 'mass' of the piston

P is the calculated pressure
cal

p is the raquired pressure
reag

After calculating the pressure at the present time step in the usual way

it is possible to integrate (6) using Verlet's algorithm, which gives:-

V (LhAt) = 2V(t)-V(t=AL} (P _~P_ YAtZm (7)
cal o}

ra
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where At is the time step.

Using equation (1)} gives:-

]

s(t+dt) = (V(e+rar)) /3

Integrating (5} using Verlet's algorithm glves:-.

g, (£+At)
B

Il

2 p, (t)-0, (t=4L)
=1 —i

+

(513 % /m -2 b, 0/G3v) a2 o (9)
-1 1L 1 .

If we define Ei = {Ei(t}jgi{t—&t))/ﬁt and substitute this into {9} we

get:

L

p, (e+bt) gty + p,(t) At
—1L —1

—1

+

-1/3 - 2 2
(v PR/ -2 by 9/(3v) ae (10)

Now substituting equations (1), (2) and (4) in (10) gives:-

R, (t+4E)/s(t+dE) = R (£)/s(t) + p, (£) be/(m s(t))

+ [r 61/t st0)) - 2 p, (£) $(&)/(3m; s(e) V(e)) ] a¢
which gives us an algorithm for updating the centre of mass as:-

s{t+ir)

Ei(t+at} = pra)

[R, (£)+p, (£} bt/m, |
+ [gi(t)(mi 2p, (£)7(t)/(3m v(E)) Jac?] (1)

and the momenta are updated in the usual way:-

pi(t+&t)/mi = g_i(t}/mi + Ei{t)at/mi {12}

Using equation (11) for the centre-of-mass motion allows the use of an ab-
solute coordinate system with only winor changes to the nearest image trans-

formation in the calculation of forces and the update routine.
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ot
If we are using a system such that s{0) = 2 box units and -1 % R; < 1.
Then if HS = 0.5 * s{t) and RHS = 1.0/HS, the nearest image transformation
is performed by:

¥D

X(I})-X(J)
X2 = XD - 2 *INT{XD*RHS)*HS
and the update for atoms or centre-of-mass leaving the box is:~
U = HS * INT{RHS*X(I))
X(I) = (1) - U0 -1
If the corrections are calculéted for thé poteﬁtiai.enerqy and the
virial, then these will also have to be scaled at each time step by:- =
VIRLRC (t+At) = VIRLRC(t)*V{t)/V{t+At)

and the same for the potential energy.

The advantages of retaining an ahsclute coordinate system, are that
no changes are required in the rotational algorithm and the calculation
of properties such as temperature, pressure, radial distribution function

and corralation function remain the same as in a constant volume program.
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