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Editorial

Welcome to the second. issue of the CCP5: Hewsletter. This issue con-—
sists almost entirely of articles written by active participants in CCPE5S
and contains useful comments and ideas which. will hopefully be of interest
to all ocur colleagues. It is a pleasure to thank the contributors for the
articles appearing here.-: We should also. like to remind our readers: that
anycne may submit an article. toe this newsletter, on any topic which may: be
of interest to our subscribers. We should like our readers,. in fack, to
think of the newsletter as the natural means of communicating ideas to the

CCP5 participants. Please make use of it!

General News

1. D. Fincham and N. Anastasiou have made generally available their mole-
cular dynamics program’ MDIONS, which enables the simulation of ionic
liguids or molten salts. The preogram employs the usual periodic boundary
conditions, a Born-Mayer—Huggins form for the short range potential func-

tions and an Ewald sun to treat the long-range coulombic interaction.

Copies of the program are available in the Daresbury TS0 datasets
FK.MDIONS, ONE.CRAYJCL (standard version) and FK.MDIONS.TWQ.CRAYJCL {vec=-
torised wversion). CCP5 participanté who are not Daresbury users may oh-
tain copies from Dr. W. Smith at Daresbury Laboratory, who will also have
the program documentation available shortly. Subscribers to the Computer
Physics Communications (CPC) Program Library should note that MDIONS will

he included scon.

2. The next CCPS meeting will be on the computational aspects of "The

Structure of the Interfacial Region'". This meeting will take place in
OXFORD (and not Southampton as was announced in the previous newsletter).
The meeting will follow on from the Faraday Society meeting under the same
title. The Faraday Soclety meeting is scheduled for 16th-17th December
1981 and the CCP5 meeting is scheduled for 17th-18th December. The speak-
ers will include Valleau (Toronto), Woodcock (Amsterdam), Frenkel (Utrecht)

and Toxvaerd (Sweden). Readers interested in attending should contact:-~



Dr. D.J. Tildesley,
Department of Chemistry,
University of Southampton, .-
Highfield, .- - . .

" Southampton- $09- 5NHv. |

3. - The-following COPS meeting will be on the gubject’ of TRANSPORT. PRO= - -
PERTIES (Royal Holloway, March 1982). It'is to be organised by Dr. P.- .-

Madden {(Cambridge) and. Dr. M:: Gillan (Harwell)..



NEAREST-IMAGE TRANSFORMATION ON CDC COMPUTERS

Nigel: Corbin and David Fincham

The nearest—image.transformation,}insidefthe;fo:ce loop, is one of
the most time-cdn5uming:parts_of:a'moiecular,dyﬁaﬁics_prngramQ__Maﬁy_peoe”
ple use the fallowing: technique EQ:lodk'for:theanearesffimage:vé@tor be€:_.

tween a palr of particles (the co-ordinates are sdaled to lie between -1

and +1) .
RX = X{I)-X(J}. - .
RX = RX-2*INT(RX) ... .

with similar expressions for y and z components. This works well on many
Computers.. - However{_fo:.CDC_machineSLthere_is;a_fastéx.methodhwhich_ré—,
quires minimal program changes. We. start the force evaluation by deéfining

a set of integer co-ordinates

IX(I) = INT{(X(I}*TWOTW) . . ..
where TWOIW = 1048576.0 = 223,. This power of two is chosen so that the
truncation introduces negligibleierrors, but integer dverflows_are avoid-~

ed. The n.i. transformation can then be programmed using shift operations

I

IRX = IX(I)-IX(J) .. .

IRX = IRX-SHIFT{SHIFT(IRX,-20),21) . . . ..

Then RX = IRX/TWOTW is the correctly transformed component of the par-
ticle=particle vector. In practice we work with IRX until the cut-~off has

been applied, to take advantage of the greater speed of integer arithmetic,

For 108 argon atoms this method reduced the CPU time per step of the

simulation from 36 ms to 29 ms.



oo TYHE EWALD SUM PROGRAM “"MDIONS™ -

Nicholas Anastasiou and Pavid Finéham

This note gives & brief description of the program  MDIONS in the' CCPS5
program library. : Copies of the program- source and full documentation can’

be obtained from the program’librarian, Dri Bill Smithi: ™

The program performs dfnamic simulations (MD} on charged parfidlés;-*“
The non-Coulomb part of the interaction is specified by means of rigid
ion potentials of the Born-Mayer-Huggins form. A mixture of several dif-
ferent species of ion may be simulated. The Coulombic part of the inter-
action is handled by means of the Ewald sum technique. The routine per-
forming the reciprocdl space part of the Ewald sun is very easily adapat-
able' to an ortho-rhombic ‘computaticnal’ box,  which would bé useful “in" the: -
study of non-cubic crystalsy The leapfrog algorithm is used to integrate:

the eguations of motion of the icns.

As well as the usual thermodynamic averages® the program calculates
the mean square displacement of the ions {(diffusion) and the partial
r.d.f's. The partial structure fdctors are found by two methods.” At léw:
k valuss they are calculated by direct evaluation of the“SUMS'Zekp(iEsE};
This method involves negligible extra work as thésge sums adre required in-
the reciprocal space sum, and it complements the second calculation which
works by Fourier transform of the r.d.f's. (the latter method can lead to

spurious oscillations at low k-values because of the cut-off).

There are three veérsions of the program. The first version is writ-
ten in ceonventional Fortran te be suitable for any computer. This has
been ‘submitted for publicaticn in the Computer Physics Communications pro-
gram library, and users of any version of the program are requested to
make reference to this publication where appropriate. This version allows
both the use of look-~up tables and direct evaluation for the real space
force calculation. A second version involves the minimal changes neces-
sary to vectorise the force calculation on the Cray. Look-up tables are
not included in this version as they would inhibit vectorisation. A third
version has been optimised by Bill Smith for the Cray, partly by means of

assembly language routines.



Typical ekecution time for the vectorised version on the Cray is
115 ms per step for 216 ions, with the r.d.f. calculation switched off.

The optimised version reduces this to 100 ms,.



AN ALGORITHM FOR ROTATIONAL MCTION OF RIGID MOLECULES

David Fincham

Dynamic simulations of rigid ﬁblyatoﬁid ﬁdléduléé.oftén ﬁééIAJQdétéfﬁ—
ion method(1] to integrate the rotational motion. The guaternions provide
a representation of the orientation of the molecule in which the equations
of motion are free of singularities. These eguations have usually been in-
tegrated using a fourth-~order predictor—ccrrector methed(2]. The purpose
of this article is to suggest the use of a new and simpler algorithm to in-
tegrate these equations which gives better results than the usual algorithm

and is also superior to the alternative constraint wmethod([3].

To explain our motivation we f£irst consider the case of centre—of-
mass motion. If we write the equation of motion of the COM as two first-

order equations, using an obvious notation

H

¥ = F/n {1a)
k=v (1b)
and use Taylor series expansion it is easy to derive the leapfrog algorithm
Ep+l/2 - Kn-l/Z + At FO/m {2a}
rFL = g ap yntl/2 {(2b)
(This algorithm is algebraically equivalent to the Verlet algorithm but
computationally supericr). In the following table we compare the energy
congervation of the leapfrog with a high-order predictor-corrector algor-

ithm, the Gear 4-level formulal4l. The table shows the RMS fluctuation in

total energy {arbitrary units)! for an argon simulation.

At{fs) 10 20 30
Leapfrog 12 19 27
Gear 4-level 11 14 123

The high order algorithm performs slightly better at smaller time-



steps’, but its errors increase vary rapldly at large time-steps, wheresas
the errors’ in the leapfrog increage only steadily with increasing Ab. - On
theoretical grounds the Gear formulae are expected to be very accurate and
stable, but the theoretical analysis applies strictly only to the case of.
a particle moving in a fixed force field. This is not the case in a dyna-
mic simulation where each particle moves in the fluctuating force field
produced by its neighbours. The high-order algorithms predict the time
derivatives of the force from its value at prévious time~steps, but it"
would appear that this prediction is invalidated by the fluctuations in
the forece field in the liguid at larger- time-steps,  and' indeed has a de-
stabilising 2ffect on the algorithm. This is important because we want to
use as large a time-step as possible in order to sample phase’ gpace most

efficiently, and the leapfrog is therefore the most suitableée-algorithm.

‘The evidencel$] indicates that in 'a molecular liquid the flucktuations
in torque act on a very similar time-~scale to the force flutuations, sug-
gesting that a simple low-order algorithm might also be suitable for rota-

tional motion. The basic equations governing rotational motion are the

following
g =T " (3a}
J =AJ {3b)
o =
_ wp} - in/zizz __.__:_::_ . T P T . L (3¢)
3 -G =x - n: g w
pl
A X =% =& ' 7m o
= 1/2 - P7
¢ E n x T W (3d)
p3
X -n £ -z ¥ 0
e o — - . -

Here T is the torque and J the angular momenttm. - We obtain the components

of J in the principal axis system by means of the rotation matrix A[1].



Dividing by the principal moments of inertia_Ii then gives the principal
components of angular velocity, which are used to obtain the time deriva-
tives of the gquaternion parameters. We re-write this last equation sym~

bolically as . .

0

this being an. equation in a four—dimensional space.. .

We see immediately that (3a) has the same form as (1a). and c¢an be in-
tegrated by. a leapfrog analogous to {2a). However, the guaternion 'velo-
city' depends not only on J but also on the guaternions themselves, l.a.
on the orientation, both directly in (3d} and through the rotation matrix.
This is a situation where a leapfrog cannot be used. To see why consider

the case of the simple first-order equation
PRI

A leapfrog for thié.équaﬁion Qould haﬁe.tﬁe form
gt 1/2 o yn=172 4 A E(xn, )

:{n+l = x1 + At f(xn+l/2'tn+1/2)

where both the 'step' and 'mid-step' co-ordinates are required since x ap—
pears in the eguation for x. The problem with this algofithm is that the
step and mid-step equations are only weakly coupled through the velocity
term; numerical errors cause theﬁ to decouple and we get two solutions
which oscillate unstably about the correct solution., The remedy is to use
the feollowing method{&]. BAn auxiliary equation propagates x from n to

n+1/2 using a first-order Taylor expansicn

: 1
xn+l/2 = xP ¢ E M f(xn!tn).

n+l/2

and the main equation leapfrogs from n to n+1, employing x in the

velocity terms



The first-order mid-step coordinate x0+t1/2 hag an auxiliary role only and

is not saved., - Overall, the algorithm is second-order accurate.
We thus arrive at the following algorithm for rotational motion.

Auxiliary part

- DA gﬂ_ =-.'An.£n
3. wt =gt /To s
pi pi i
. n+li2 - onoy 1'&'- n .
4 g q > it S E;

5. . Use q"1/2 to calculate an*1/2 apa ontl/z . -

Main part -

6. £n+1/2 = En—llz + At En

7.  gn+l/2 o an#l/2 n+l/2

P —]
8. wnl/2 o goli2y
pi pi 1

O G G

10, Store gﬁ+l/2 and gn+1 for the next step.

The following table compares thé energy &oﬁservations éf this algori-
thm with the fourth-order predictor-corrector, and alsc with the constraint
method. In the latter case the 'free-flight' phase uses a leapfrog, and
so we might expect gimilar behaviour to the new algorithm. The quantity

tabulated is the RMS fluctuation in total energy expressed as a percentage



of the fluctuation in potential energy; and the system is a three=-centre

model for cyclopropane{7].

o BR(Es) . B e 80 oo 10012

New algorithm 2.6 4,7 9.7 20
Constraints . .- .. 2.8. .. 2.8~ 12.4. . 37
4th oxrder p.cC. 4.0 4.2 23.6 85

We see as expected that although the fourth-order algorifhm is accur-
ate at small time-steps, its errors increase much more rapidly as the time-
step increases than do those of the suggested new algorithm, which i1s also
better in this respect than the constraint algorithm. Further advantages
of the new algorithm are that it is simple, needs minimal storége {three

components of J and four of g} and is self-starting.

Finally, we note that diatomics are a special case. If the constraint
method is used the equation for the Singie constraint force is a guadratic
and hence exactly scoluble, whereas in the polyatomic case the equations of
constraint must be linecarised and iterated. On the other hand, the four
quaternions with the usual single constraint over-determine the problem
since there are only two degrees of freedom. For these reasons we antici-

pate that the constraint method may be superior for diatomics.
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MANY PARTICLE MOILECULAR DYNAMICS METHODS

D.M. Heyes

_ ~In & Molecular Dynamlcs, MD, program the number of dlstlnot palr sep-
araﬁlons 15 N{ﬂ—1)/2 for a MD cell contalnlng N molecules.: Usually the__
range of the lnteractlon potantlal is llmlted to- several molecular dlame-
ters so that a spherlcal truncatlon can bé applled when evaluatlnq the in=-
teractions._ However, in a conventlonal program the nearest—lmage trans—
Eormatlon must be applled to each pair in the system, and the:r separatlon
determlned, before the "cut-off" is applied. Thus the computer time con-
tains a component which increases gquadratically with N. Consequently, an
upper llmlt of approxlmately 1000 molecules lS usual. Further, on a vetor
processor the spherical truncation would inhibit vectorlsatlon(l) s¢ that
the ernergy and forces as well must be evaluated for each pair in tho_sysf

tem, even though when N is large most of them will be out_of range.”;__

Two methods which enoble a large nunber of molecuiaéo.in tﬁe Mb celi
to be simulated are discussed below. In these schemes the gomputer time
increases approximately linearly with time because they use ways of pre-
eliminating the more disgtant, non~contributing, interactions before thé

inter-particle separations are calculated.

The flrst method establlshes a table of nelghbours for each paxtlcle
at tlme steps cf roughly equal lnterval (typlcally every 10)(1)  This
table 15 used at 1nterven1ng tlme steps to determlne those molecules with
a chance of belng w1th1n the truncatlon radlus of each’ partlcle._ Unfo:j
tunately thls method has cons;derable memoxy requlrements. The table of
nelghbours needs ~ 45 N words on using a truncatlon radlus of 2. 50 and

rg = 2. 940 [see raf, (1}} on a Lennard—Jones liquid near the triple poxnt.

'iﬁ tﬁe.éecond.method the moiecuies’aro aosigﬁed to ﬂL smallef subf
cells or link cells which completely £ill the original MD cer1ll 2, 3}, he
minimum side length of a link cell saquals the truncation range of the in-
teractions. Particies within a link.cell only then need to interact with
these in the first shell of llnk cells about it. The contents of each
link cell are efficiently obtalned through an arfay, LIN¥, of dimension N,

which contains a consecutive series of closed chains of particle indices,

11



each chain being associated with a particular link cell. Each element in
LINK contains the index of the next particle in the chain. 'The periocdic
boundary conditions are applied to the co-~ordinates of each link cell and
then dutomatically to their dontents. Thé computer memory reguirements of
this method are rather modest. & part from arrdy LINK(N}, two more arrays

of dimension NL aré the only others needed to' incorporate this methods

" Yeing the Lénnard-Jones MD progeam MOATOM(*) on the state point
*

p* = 0.8552 = N o3/v and kT/€ = 0.7053 the spesds of the three methods are

as follows.

' Average c.p.d. time on the ULCC CDC 7600 to perform a time-step

wethod | owiot0s o286 sea 2043____:_6912
Conventional methed  ° " 0.046 " 0.163 1,573 8,460  94.173

Neighbourhood tables - 0.093 0.310 * *
(I'y = 1.001 nm, see ref.(1)}y R '
Link cells = S L ge34 7 2032 6.666

- untried, ¥ I.c.m. memory exceeded

Tae conventional method iS'ﬁbGIfime'dbhéﬁhiﬁq'fdr N'lérdérzthén ap-
proximately 1000. - Although the neighbourhood lists method is much faster
than theé conventional method, it too is not practicable for N greater than
1000 because of the considerable memory requirements, Even if this is
overdome, thée approximately one—irn-ten time steps at which all interac-

ltionS'muSt be considered in order to create the neighbour lists, would be
a prohibitive factor in its implementation. Timings for the conventional
method indicate the long time required for this albeit infrequent opera-

tion.

The Llink cell methdd'ptdviaes”réﬁhernunsgectaCular:Qaihs'in speed for
moderately large samples of N ~ 1000 to 2000, but becomes a prograssively
more attractive method when the very large N values of ~ 7000 are consi-

dared.

12



396ACT

REFERENCES

1.

2.

D. Fincham and B.J. Ralston, Comp. Phys. Commun. 32, (1981 127-134.
Prs. '« von Swol and L.V. Woodcock of The Laboratory for Physical
Chemiztry, University of Amsterdam, The Netherlands, are thanked for

their aid in programming the link cell method.

R.W. Hockney, in "Daresbury Laboratory: Information Quarterly for MD

and MC Simulations", pp.22-23.

D, Fincham, Comp. Phys. Commun. 21, {1980) 247-256.

13






