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Ed~torial 

Welcome to the second issue of the CCPS Newsletter. Th~s issue con­

sists almost. entirely of articles written by active participants in CCP5 

and contains useful comments and ideas which will hopefully be of interest 

to all our colleagues. It is a pleasure to thank the contributors for the 

articles appearing here. We should also like to remind our readers that 

anyone may submit an article to this newsletter, on any topic which may be 

of interest to our subscribers. We should like our readers, in fact, to 

think of the newsletter as the natural means of communicating ideas to the 

CCPS participants. Please make use of it! 

General News 

1. D. Fincham and N. Anastasiou have made generally available the~r mole­

cular dynamics program· MDIONS, which enables the simulation of ionic 

liquids or molten salts. The program employs the usual periodic boundary 

conditions, a Born-Mayer-Huggins form for the short range potential func­

tions and an Ewald sum to treat the long-range coulombic interaction. 

Copies of the program are available in the Daresbury TSO datasets 

FK.MDIONS.ONE.CRAYJCL (standard version) and FK.MDIONS.TWO.CRAYJCL (vec­

torised version) • CCPS participants who are not Daresbury users may ob­

tain copies from Dr. ~.;. Smith at Daresbury Laboratory, who will also have 

the program documentation available shortly. SUbscribers to the Computer 

Physics Communications (CPC) Program Library should note that MDIONS will 

be included soon. 

2. The next CCPS meeting will be on the computational aspects of "'l'he 

Structure of the Interfacial Region", This meeting will take place in 

OXFORD (and not Southampton as was announced in the previous newsletter) 

The meeting will follow on from the Faraday Society meeting under the same 

title. The Faraday Society meeting is scheduled for 16th-17th December 

1981 and the CCPS meeting is scheduled for 17th-18th December. The speak­

ers will include Valleau (Toronto), Woodcock (Amsterdam), Frenkel (Utrecht) 

and Toxvaerd (Sweden), Readers interested in attending should contact:-



Dr. o.J. ·rildesley, 

Department of Chemistry, 

Un~versity of Southampton, 

Highfield, 

Southampton 809 SNH. 

3. The following CCPS meeting will be on the subject of TRANSPORT PRO­

PERTIES (Royal Holloway, March 1982). It is to be organised by or. p. 

Madden (Cambridge) and Dr. M. Gillan (Harwell). 
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NEAREST-IMAGE TRANSFORMATION ON CDC COMPUTERS 

Nigel Corbin and David Fincham 

The nearest-image transformation, inside the force loop, is one of 

the most time-consuming parts of a molecular dynamics program. Many peo­

ple use the following technique to look for the nearest- image vector be­

tween a pair of particles (the co-ordinates are scaled to lie between -1 

and +1) 

RX""' X(I)-X(J) 

RX = RX-2*IN'l'(RX) 

with similar expressions for y and z components. This works well on many 

computers. However, for CDC machines there is a faster method which re­

qui.res minimal program changes. We start the force evaluation by defining 

a set of integer co-ordinates 

IX(I) = INT(X(I)*TWOTW) 

where TWOTW ~ 1048576.0 = 2 20 • This power of two is chosen so that the 

truncation introduces negligible errors, but integer overflows are avoid­

ed. The n.i. transformation can then be programmed using shift operations 

IRX = IX(I)-IX(J) 

IRX IRX-SHIFT(SHIFT(IRX, -20) ,21) 

Then RX "" IRX/TI'lO'I'W is the correctly transformed component of the par-

ticle-particle vector. In practice we work with IRX until the cut-off has 

been applied, to take advantage of the greater speed of integer ar~thmetic, 

For 108 argon atoms this method reduced the CPU time per step of the 

simulation from 36 ms to 29 ms. 

3 



THE E\•TALD SUM PROGRAM "MDIONS" 

Nicholas Anastasiou and David Fincham 

This note gives a brief description of the program MDIONS in the CCPS 

program library. Copies of the program source and full documentation can 

be obtained from the program librarian, Dr. Bill Smith. 

The program performs dynamic simulations (MD) on charged particles. 

The non-coulomb part of the interaction is specified by means of rigid 

ion potentials of the Born-Mayer-Huggins form. A mixture of several dif­

ferent species of ~on may be simulated. The Coulombic part of the inter­

action is handled by means of the Ewald sum technique. The routine per­

fanning the reciprocal space part of the Ewald stnn is very easily adapat­

able to an ortho-rhombic computational box, which would be useful in the 

study of nan-cubic crystals. The leapfrog algorithm is used to integrate 

the equations of motion of the ions. 

As well as the usual thermodynamic averages the program calculates 

the mean square displacement of the ions (diffusion) and the partial 

r.d,f's. The partial structure factors are found by two methods. At low 

k values they are calculated by direct evaluation of the sums Eexp( i.!:_•E>, 

This method involves negligible extra work as these sums are required in 

the reciprocal space sum, and it complements the second calculat~on which 

works by Fourier transform of the r.d,f's. (the latter method can lead to 

spurious oscillations at low k-values because of the cut-off). 

There are three versions of the program. 1he first version is wr~t­

ten in conventional Fortran to be suitable for any computer. This has 

been submitted for publication in the Computer Physics Communications pro­

gram library, and users of any version of the program are requested to 

make reference to this publication where appropriate, This version allows 

both the use of look-up tables and direct evaluation for the real space 

force calculation. A second 'lersion involves the minimal changes neces-

sary to vectorise the force calculation on the cray. Look-up tables are 

not included in this version as they would inhibit vectorisation. A third 

version has been optimised by Bill Smith for the Cray, partly by means of 

assembly language routines. 
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Typical execution time for the vectorised version on the Cray is 

115 rns per step for 216 ions, with the r.d.f. calculation switched off, 

The optimised version reduces this to 100 n~. 
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AN ALGORITHM FOR ROTATIONAL MOTION OF RIGID MOLECULES 

David Fincham 

Dynamic simulations of r1gid polyatomic molecules often use a quatern­

ion method[1J to integrate the rotational motion. The quaternions provide 

a representation of the orientation of the molecule in which the equations 

of motion are free of singularities. These equations have usually been in­

tegrated using a fourth-order pred1ctor-corrector method[2] • The purpose 

of this article is to suggest the use of a new and simpler algorithm to in­

tegrate these equations which gives better results than the usual algorithm 

and is also superior to the alternative constraint method[3J, 

To explain our motivat1on we first consider the case of centre-of-

mass motion. If we write the equation of motion of the COM as two first-

order equations, using an obvious notation 

( 1 a) 

A = v (1 b) 

and use Taylor series expansion it is easy to derive the leapfrog algor1thm 

vn+ l/2 ( 2a) 

(2b) 

(This algorithm is algebraically equivalent to the Verlet algorithm but 

computationally superior), In the following table we compare the energy 

conservation of the leapfrog with a high-order predictor-corrector algor­

ithm, the Gear 4-level formula[4]. The table shows the RMS fluctuation in 

total energy (arbitrary units) for an argon simulation. 

L!.t(fs) 

Leapfrog 

Gear 4-level 

10 

12 

11 

20 

19 

14 

30 

27 

123 

The high order algorithm performs slightly better at smaller time-
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steps, but its errors increase vary rapidly at large time-steps, whereas 

the errors in the leapfrog inc:r·ease only steadily with increasing 6-t. On 

theoretical grounds the Gear formulae are expected to be very accurate and 

stable, but the theoretical analysis applies strictly only to the case of 

a particle moving in a fixed force field. Th~s is not the case in a dyna­

m~c simulation where each particle moves in the fluctuating force field 

produced by its neighbours. The high-order algorithms predict the time 

derivatives of the force from its value at previous time-steps, but it 

would appear that this prediction is invalidated by the fluctuations in 

the force field in the liquid at larger time-steps, and indeed has a de­

stabilising effect on the algorithm. This is important because we want tb 

use as large a time-step as possible in order to sample phase space most 

efficiently, and the leapfrog is therefore the most suitable algorithm. 

The evidence[S] indicates that in a molecular liquid the fluctuations 

in torque act on a very similar time-scale to the force flutuations, sug­

gesting that a simple low-order algorithm might also be suitable for rota-

tiona! motion. The basic equations governing rotational motion are the 

following 

(3a) 

J " A J (3b) 
-p " 

w " J ./T. 
p.i. p~ -~ 

(3c) 

' l 
_, -x n < w 

pl 

" -< I X -( n w 
! p2 

I" 1/2 

( i ( n X ( w (3d) 

I p3 

x -n ( -( X 0 

Here T is the torque and J - the angular moment.um. We obtain the components 

of J in the principal axis system by means of the rotation matrix A[1]. 
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Dividing by the principal moments of inertia I. then gives the principal 

" components of angular velocity, which are used to obtain the time deriva-

tives of the quaternion parameters. We re-write this last equation sym­

bolically as 

. 
.5!= Q w -p 

this being an equation in a four-dimensional space. 

(3d) 

We see inunediately that (3a) has the same form as ( 1a) and can be in­

tegrated by a leapfrog analogous to (2a). However, the quaternion 'velo­

city' depends not only on J but also on the quaternions themselves, i.e. 

on the orientation, both directly in (3d) and through the rotation matrix. 

This is a situation where a leapfrog cannot be used. 

the case of the simple first-order equation 

X "" f(x,t) 

A leapfrog for this equation would have the form 

To see why consider 

where both the 'step' and 'mid-step' co-ordinates are required since x ap­

pears in the equation for x. The problem with this algorithm is that the 

step and mid-step equations are only weakly coupled through the velocity 

term; numerical errors cause them to decouple and we get two solutions 

which oscillate unstably about the correct solution. The remedy ~s to use 

the following method[6]. An auxiliary equation propagates x from n to 

n+1 /2 using a first-order TayloL· expansJ.on 

and the main equation leapfrogs from n to n+1, employing xn+l/2 in the 

velocity terms 
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xn+l"" xn + llt f(xn+l/2,tn+l/2) 

The first-order mid-step coordinate xn+l/ 2 has an auxiliary role only and 

is not saved. OVerall, the algorithm is second-order accurate. 

we thus arrive at the following algor~thm for rotational motion. 

Auxiliary part 

1 • Jn ~ Jn-1/2 + <It T" 
2 

2. Jn ~ An Jn 
-p ~ 

3. wn ~ Jn /I 
pi pi i 

4. 5
n+l/2 "'sn + 

1 <It Qn wn 
2 ~ -p 

5. Use g;n+l/ 2 to calculate An+l/2 and Qn+ l/2 
~ 

Main part 

6. Jn+ l/2 Jn-1/2 + <It Tn 

7. Jn+l /2 
~ An+ l /2 Jn+l/2 

p 

8. wn+l/2 ~ Jn+ 112 /I. 
pi pi > 

9. .Sn+l/2 " gn + <It Qn+ 1/2 wn+ 1/2 
-p 

1 0. Store Jn+l /2 and sn+l for the next step. 

The following table compares the energy conservations of this algori­

thm with the fourth-order predictor-corrector, and also with the constraint 

method. In the latter case the 'free-flight' phase uses a leapfrog, and 

so we might expect similar behaviour to the new algoritlun. The quantity 

tabulated is the RMS fluc·tuation in total energy expressed as a percentage 

9 



of the fluctuation in potential energy, and the system is a three-centre 

model for cyclopropane(?]. 

llt(fs) 

New algorithm 

Constraints 

4th order p.c. 

6 

2.6 

2.8 

4. 0 

8 

4.7 

2.8 

4.2 

10 

9.7 

12.4 

23.6 

12 

20 

37 

85 

We see as expected that although the fourth-order algorithm is accur­

ate at small time-steps, its errors increase much more rapidly as the time­

step increases than do those of the suggested new algorithm, which ~s also 

better ~n this respect than the constraint algorithm. Further advantages 

of the new algorithm are that it is simple, needs minimal storage (three 

components of J and four of 3) and is self-starting. 

Finally, we note that diatomics are a special case. If the constraint 

method is used the equation for the single constraint force is a quadratic 

and hence exactly soluble, whereas in the polyatomic case the equations of 

constraint must be linearised and iterated. on the other hand, the four 

quaternions with the usual single constraint over-determine the problem 

since there are only two degrees of freedom. Fbr these reasons we antici­

pate that the constraint method may be superior for diatomics. 
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t<!ANY PARTICLE MOLECULAR DYNAMICS METHODS 

D.M. Heyes 

In a ~~lecular Dynamics, MD, program the number of distinct pair sep­

arations is N(N-1)/2 for a MD cell contain~ng N molecules. Usually the 

range of the interaction potential is limited to several molecular diame­

ters so that a spher~cal truncation can be applied when evaluating the in­

teractions. However, in a conventional program the nearest-image trans­

formation must be applied to each pair in the system, and their separation 

determined, before the "cut-off" is applied. 'Ihus the computer time con­

tains a component which increases quadratically with N. Consequently, an 

upper limit of approximately 1000 molecules is usual. Further, on a vetor 

processor the spherical truncation would inhibit vectorisation< l) so that 

the energy and forces as well must be evaluated for each pair in the sys­

tem, even though when N is large most of them will be out of range. 

Two methods which enable a large number of moleculaes in the MD cell 

to be simulated are discussed below. In these schemes the computer time 

increases approximately linearly with time because they use ways of pre­

eliminating the more distant, non-contributing, interactions before the 

inter-particle separations are calculated. 

The first method establishes a table of neighbours for each particle 

at time steps of roughly equal interval (typically every 10)( 1). This 

table is used at intervening time steps to determine those molecules with 

a chance of being within the truncation radius of each particle. Unfor­

tunately this method has considerable memory requirements. The table of 

neighbours needs~ 45 N words on using a truncat~on radius of 2.50 and 

rz == 2.940 [see ref, ( 1 )] on a Lennard-Janes liquid near the triple point. 

lh the second method the molecules are assigned to NL smaller sub­

cells or link cells which completely fill the original MD cell( 2, 3), The 

minimum side length of a link cell equals the truncation range of the in­

teractions. Particles within a link cell only then need to interact with 

those in the first shell of link cells about it. The contents of each 

link cell are efficiently obtained through an array, LINK, of dimension N, 

which contains a consecutive series of closed chains of particle indices, 
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each chain being associated with a particular link cell. Each element in 

LINK contains the index of the next particle in the chain. The periodic 

boundary conditions are applied to the co-ordinates of each link cell and 

then automatically to their contents. The computer memory requirements of 

this method are rather modest. A part from array LINK(N), two more arrays 

of dimension NL are the only others needed to incorporate this method. 

Using the Lennard-Janes MD program MDATOM( ~) on the state point 

p* ~ 0.8552 = N cr 3;v and kT/E = 0.7053 the speeds of the three methods are 

as follows. 

Average c.p.u. time on the ULCC CDC 7600 to perform a time-step 

Method 108 256 864 2048 6912 

Conventional method o. 036 0. 163 

0.093 

1. 573 8.460 94. 173 

Neighbourhood tables 

<f2 = 1.001 run, see re£.(1)} 

Link cells 

- untried, * l.c.m. memory exceeded 

0.310 

0.834 

(64) 

• 

2.321 

I 125 l 

• 

The convent~onal method is too time consuming for N larger than ap­

proximately 1000. Although the neighbourhood lists method is much faster 

than the conventional method, it too is not practicable for N greater than 

1000 because of the considerable memory requ~rements. Even if this is 

overcome, the approximately one-in-ten time steps at which all interac­

tions must be considered in order to create the neighbour lists, would be 

a prohibitive factor in its implementation. Timings for the conventional 

method indicate the long time required for this albeit infrequent opera-

tion. 

The link cell method provides rather unspectacular gains in speed for 

moderately large samples of N ~ 1000 to 2000, but becomes a progressively 

more attractive method when the very large N values of ~ 7000 are consi­

dered. 
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