16 July 2013

DL_POLY molecular dynamics simulation package

cgm-rdf - tool for coarse-grain mapping and RDF calculation

by Andrey Brukhno
University of Bath & Daresbury Laboratory, United Kingdom

Coarse-graining implies grouping of atoms into coarse-grain (CG) units called “beads”,
whereby a vast amount of the “uninteresting” degrees of freedom can be excluded from
consideration. This makes simulation of a CG system significantly less resource/time
demanding. The utility provides the means to (i) prepare a CG representation of an
atomistic system simulated with the use of DL_POLY, and (ii) to calculate pairwise radial
distribution functions (RDF), g(r;j), based on the obtained CG representation.

The coarse-graining definitions are given in the input file CG_MAP. xm which specifies the
CG mapping between the original and coarse-grained systems. The xml format has been
chosen for compatibility with VOTCA package — a powerful tool for systematic coarse-
graining applications becoming popular nowadays. Thus, the format of CG_MAP. xm is
supposed to comply with that described in the manual of VOTCA (section 3.1 Mapping
files) to which the user should refer if this brief reference is insufficient. Note, though, that
tags related to bonded and angular interactions (<cg_bonded>, <bond>, <angl e> etc.)
are not supported yet by cgm r df tool, although their implementation is planned/pending.

General workflow of CG mapping with cgm-rdf

The utility starts by, first, scanning the original force-field (topology) file called FIELD and,
then, analysing the mapping scheme specified in CG_MAP.xml. If the latter is consistent
with the molecule definitions in file FIELD, cgmrdf carries out the mapping of
configurations found in files CONFIG, REVCON and, optionally, HISTORY (the trajectory
file) previously obtained for the full-atom system.

The produced output includes the following: FIELD_CG, CONFIG_CG, REVCON_CG
and, optionally, HISTORY_CG. Regarding the produced FIELD_CG file, it must be again
noted that the (missing) definitions for bond and angle dependent intra-molecular
interactions remain to be introduced manually.

While running, cgm r df produces some messages to inform the user about its progress
and errors encountered, if any. Since these messages are barely formatted and include
expanded tags and long mapping strings read from CG_MAP.xml, to avoid obscuring the
terminal view, it is recommended to redirect the standard output of cgm r df into a log-file.

To resume, provided the current working directory contains the output of DL_POLY for the
full-atom system, the CG tool can be invoked as follows:

user @ost<dl _poly simdir>$ cgmrdf.x > cgmrdf.log &

Then, if anything goes not as expected, one can check the log file (cgm rdf .| og) for
clues. Most often the errors will arise due to misspellings in CG_MAP.xml — checking and
correcting tags, names of molecules, atoms and maps should normally resolve the issues
(see below for the format details).

Expected format of CG_MAP.xml

The CG mapping input file for cgm r df assumes XML format, i.e. using xml-tags (e.g.
<t ag></t ag>), where any meaningful value must happen only in between the opening
(<t ag>) and closing (</ t ag>) tags. An example of the correct CG_map. xmi file in the
case of mapping a three-site water molecule (TIP3P) onto one CG bead is given below.

<cg_nol ecul e> <l-- start with this tag section, can have a few -->
<l-- section describing a CG nol ecul e type -->
<name>Wat er </ name> <! -- have this tag *once* in section -->
<l-- nanme of the CG nol ecul e after mapping -->
<ident>water tip3p</ident> <!-- have this tag *once* in section -->
<!-- panme of the original nolecule in FIELD -->
<t opol ogy> <!-- have this tag subsection *once* -->
<cg_beads> <!-- have this tag subsection *once* -->
<cg_bead> <l-- at least one instance = 1 CG bead -->
<name>H20 conk/ nanme> <! -- *once* in subsection -->
<l-- type of the CG bead in created FIELD CG -->
<type>H2O</t ype> <l-- *once* in subsection -->
<l-- nane of the CG bead in created FIELD CG -->
<mappi ng>W&/ mappi ng> <! -- *once* in subsection -->
<l-- nane of the CG map to be used for the bead -->
<beads> <!-- specification of atons in the CG bead, *once*-->

Lwtip3p: OV 1:w tip3p:HW 1:w tip3p: HW
<l-- 1L:*>OW1l:*. HW -->
</ beads>
</ cg_bead>
</ cg_beads>
</t opol ogy>

<maps> <!-- maps contai ner subsection; only *once* -->
<map> <!-- map specs; at |east one, can have a few -->
<I-- at |east one bead nust refer to the map nane-->

<nane>W/ nane>
<wei ght s> <l-- atomweights in the CG bead, one per entry -->

16. 1.008 1.008
<l-- 16. 1.008 -->
</ wei ght s>
</ map>
</ maps>
</ cg_nol ecul e>

Here the tags, their values and user remarks (embraced in <!-- -->) are highlighted in blue,
black and grey, respectively. The comments briefly describe the tag rules and meaning.
Molecule, atom and map names can be any character string complying with the DL_POLY
format (sic. bead names and types must be of no more than 8 characters). Blank spaces,
digits and most of the special characters are allowed, except for the backslash (' /' ; not to
mess up the tags), column symbol (' : ' used as a delimiter in the <beads> specification),
tilde and hash symbols (" ~' and ' #' used as delimiters by cgm r df internally).

Clearly, the CG mapping is done molecule-wise, i.e. one cannot unite two or more
molecules into one CG entity, nor include atoms from different molecules into the
same CG bead. Scenario are, though, possible where the same atom can be
included into different CG beads within the same molecule. Note also that molecule
type given as value in <ident> tag must be found in the original FIELD file, otherwise
cgm r df will terminate with an error.

Bead names and types within <cg_bead> tag

Since each CG bead is mapped onto a specific set of atoms, which implies unique
atomic indices, the bead names set by <cg_ bead><nane> tag must be unique within
the molecule specification. Otherwise cgm r df tool will halt with an error: “repetitive CG
bead name”. However, DL_POLY treats atom names essentially as atom types, and
therefore it is the bead types specified by <cg_bead><t ype> tag that are stored in the
output files in place of the “atom names”, whereas the bead names from CG_map. xmi
take place of the “atom types” in the FIELD CG file.

This way it becomes possible not only to have the same “atom name” for physically
identical beads (in CONFIG_CG, REVCON_CG and HISTORY_CG files), but also to opt
for unique “atom names”, if necessary, by specifying unique bead types in CG_map. xm .
This feature, although being a deviation from the original VOTCA specification, adds some
flexibility when using cgm r df tool — consider calculating RDFs for either all pairs of
physically identical beads or only certain bead pairs (say, due to their “importance”).

Atom lists in <beads> tag

According to the VOTCA xml specification, each atom included in a CG bead is identified
by a triple ID as follows: r esi due_i ndex: r esi due_nane: at om nane, all the three IDs
being found in the original topology file (this is the case for Gromacs MD simulation
package). In the case of DL_POLY residue name is not used in FIELD files at all, while
residue index is equivalent with the index of a charge/neutral group within a molecule.
Therefore, for the lack of a better option, cgm r df ignores the value of r esi due_nane
and only uses resi due_i ndex and at om nane from the VOTCA's triplet for atom
identification. Note, though, that while residue name is ignored, it has to be present in
some way, e.g. the wild-card character' *' or molecule name (or type) can be used for it.

The resi due_i ndex should match the index of the chargel/neutral group that the
picked up atom belongs to. However, if the residue/group index cannot be taken into
account, e.g. when the entire molecule is the only group, or group numbers are absent in
FIELD, the wild-card ' *' can be used to indicate that residue index must be ignored.

Various ways to identify atoms within the <beads> tag.

1) Most straightforward is to to copy the group index and name of each atom in the
same order as they appear in the FIELD file, see the example above. In this case the
atom order within the molecule is presumed to be the same as in the <beads> tag.

2) It is also possible to specify the index of atom after its name, with a hash ' #'
symbol preceding the index (res_index:res_nane: at om nanme#at om i ndex), e.qg.
<beads> 1:*:OM1 1:*:HW2 1:*: HWM3 </ beads>. Alternatively, one can skip
atom names altogether and opt for “: #at om_i ndex” representation only. When atom
indices are present, atoms can enter the <beads> tag in arbitrary order.

NOTE: if r esi due_i ndex is also provided, #at om i ndex represents the atom position
within the group, defined by the order of appearance of atoms within the group in the
FIELD file. In contrast, in the case of undefined r esi due_i ndex (*'), #at om_i ndex
should be set equal to the atom positional index within the molecule, defined by the order
of appearance of atoms in the FIELD file.

3) The most compact way of specifying atom lists is by using the wild-card "'
instead of atom indices (but not for parts of indices or names!). For instance, in order to
include all atoms with the same name belonging to the same group, one can use

“ at om_name#* “ or even simpler form “: at om_nane**, see the commented-out list of the
<beads> tag in the example for water above. Evidently, by skipping the atom names and
using “: #** in the place of at om nane, one can define one CG bead for the entire group
(residue), or even molecule (sic. “*: *: *™)!

NOTE: the allowance of using wild-cards and hash-preceded atom indices is also an
extension to the VOTCA specification, which does not, though, restrict the use of the
VOTCA tools after the CG mapping has been done for DL_POLY input files with cgm r df .

Mapping specification in <map><name> and <map><weights> tags

The weights allow to weigh each atom contribution to a CG bead as necessary. In the
simplest case of centring the bead on the center of mass (COM) of the group of included
atoms, weights must be set equal to the atom masses. Common sense suggests that each
map name (defined by <map><name>) should be present within the <cg_beads>
subsection at least once (named by <cg_bead><mappi ng>). Note that cgm-rdf will halt
if it's not the case! Obviously, the sequence and number of entries in <map><weights>
must match those specified in <cg_bead><beads> for the same <cg_bead><mappi ng>
name, i.e. weights are assigned atom-by-atom or entry-by-entry (if ' *' characters are
used). To set all weights equal to masses for all atoms in a bead, put' *' in <wei ght s>.

Being the counterpart of atom masses, weights are accounted for in the same fashion, i.e.
all atom coordinates and velocity components (if present in HISTORY file) are re-weighted
by normalised weights, so that the sum of all atom weights within a CG bead equals 1.
Note that this way the total momentum of the atomic group included in a CG bead is
preserved, whereas the corresponding kinetic energy is not. Forces are treated as
conservative, i.e. dependent on atom-atom separations only, and hence, the total force on
the CG bead center is set to the sum of all the atomic forces (if present in HISTORY file).

Using cgm r df tool for RDF calculation

The utility allows also to calculate radial distribution functions, g(r;), for pairs of CG sites,
based on a set of full-atom configurations (frames) stored in the trajectory file HISTORY.
As will be detailed shortly, in a single run of cgm r df one can obtain either a single RDF
for a particular pair of beads identified in file CG _map. xm by their “bead names”, or
several RDFs for a set of bead pairs, as is prescribed by the user in an additional input file
named i np. cgm r df . NOTE: if the latter file is not found in the working directory, the tool
can still be used for CG mapping, without RDF calculations.

Format of the RDF input file for cgm r df

Before using cgm r df for RDF calculus one needs to create the input file for it, called
i np. cgm rdf, containing RDF-specific input. This input file should have the following
“fixed” format and contain all the parameters shown in the example below. Note that for
running cgm r df without reading errors it is essential to adhere to the specified line
sequence in the input file and keeping the number and the meaning of the parameters on
each line exactly as exemplified.

Each parameter-containing line, or “record”, is preceded by a descriptive remark line with a
short reference for the parameters read in next. To make the input file easier readable, the
format assumes exactly one(!) empty line to separate a previously read record and the
next remark line. All remark lines and single empty lines are simply skipped by cgm r df .
Thus, the format is based on line triplets containing subsequently: descriptor,
record and separator lines. Provided the parameter values in a record are put in the

correct order, the figures do not assume any particular formatting, i.e. they are read
in a “free style” format: read(i std, *)val 1, val 2 etc..

Trajectory file name (H STORY or HI STORY_CG
"H STORY_CG'

beadl, bead?2
H20 ALL

r cut (<= Lmn/2), delr (Angstrom
10. 0. 05

Nbeads , Conf0O, ConfN, Nskip
-1 1 1000 10

The first record should contain a string specifying the name of the trajectory file, either
HISTORY or HISTORY_CG. NOTE: specifying HISTORY here implies skipping the
creation of HISTORY_CG file! The second record provides two bead names (must be
present in CG map. xnl) as character*(8) words. Single or double quotes can be
used to embrace strings containing blank spaces, otherwise the quotes are unnecessary.

The third record defines the cutoff distance (&), r _cut, and the bin size, del r, to be used
for the r-grid, from which the number of bins is calculated. Mbst often delr = 0.05 A
would be suitable, as producing sufficiently detailed RDFs, and still keeping the statistical
noise level under control.

NOTE: the cutoff value does not need to be related in any way to the actual cutoff(s) used
in the DL_POLY simulation (cf. CONTROL file). But, of course, the cutoff for RDF cannot
be greater than half the minimum cell dimension in any frame found in the HISTORY file,
i.e. one has to be careful with the cutoff choice in the case of NpT trajectories!

The last (forth) record sets the (i nt eger) numbers for: Nbeads — the number of beads
per frame; Conf 0 and Conf N — the first and the last frames to account for, and Nski p —
the skipping step between the frames included in the RDF calculation. Any of the numbers
can be set to - 1, in which case cgm r df will assume one of the following: for Nbeads —
reading it from the first frame in the HISTORY file; for Conf 0 and Conf N — starting with the
first frame and/or finishing with the last frame found in HISTORY; and Nski p=-1 will be
translated as Nski p=1.

Alternative ways of RDF(s) calculation

If two actual bead names (present in CG_map. xm) are given, then a single RDF will be
calculated and stored in file called RDFDAT _beadl_bead?2 (two-column ACSII file), where
“beadl” and “bead?2” stand for the bead names used in the input. It is, however, possible to
replace one or both bead names in the input with a directive word: “ANY” or “ALL". Thereby
cgm r df will be directed to calculate RDF(s) not for a particular bead pair but as follows.

1) Self-evidently, “ANY” invokes the substitution of the actual bead name by “any bead
name”, implying that all possible pairs (consistent with the reference to the other bead) will
be included into a single RDF file: RDFDAT_beadl_ any (or RDFDAT_any_any).

2) In contrast, directive “ALL” tells cgm r df to run through “all bead names” one-by-one
and, hence, calculate the (multiple) separate RDFs stored as RDFDAT_beadl_bead?2.

