
25 September 2013

DL_POLY molecular dynamics simulation package

DL_CGMAP – tool for coarse-graining and RDF calculation

by Andrey Brukhno

University of Bath & Daresbury Laboratory, United Kingdom

Coarse-graining implies grouping of atoms into coarse-grain (CG) units called “beads”,
whereby a vast amount of the “uninteresting” degrees of freedom can be excluded from
consideration. This makes simulation of a CG system significantly less resource/time
demanding. The utility provides the means to (i) prepare a CG representation of an atomistic
system simulated with the use of DL_POLY, and (ii) to calculate pairwise radial distribution
functions (RDF), g(rij), based on the obtained CG representation.

The coarse-graining definitions are given in the input file CG_MAP.xml which specifies the
CG mapping between the original and coarse-grained systems. The xml format has been
chosen for compatibility with VOTCA package – a powerful tool for systematic coarse-
graining applications becoming popular nowadays. Thus, the format of CG_MAP.xml is
supposed to comply with that described in the manual of VOTCA (section 3.1 Mapping files)
to which the user should refer if this brief reference is insufficient. Note, though, that tags
related to bonded and angular interactions (<cg_bonded>, <bond>, <angle> etc.) are not
supported yet by DL_CGMAP tool, although their implementation is planned/pending.

General workflow of CG mapping with DL_CGMAP

The utility starts by, first, scanning the original force-field (topology) file called FIELD and,
then, analysing the mapping scheme specified in CG_MAP.xml. If the latter is consistent with
the molecule definitions in file FIELD, DL_CGMAP carries out the mapping of configurations
found in files CONFIG, REVCON and, optionally, HISTORY (the trajectory file) previously
obtained for the full-atom system.

The produced output includes the following: FIELD_CG, CONFIG_CG, REVCON_CG and,
optionally, HISTORY_CG. Regarding the produced FIELD_CG file, it must be again noted
that the (missing) definitions for bond and angle dependent intra-molecular interactions
remain to be introduced manually.

While running, DL_CGMAP produces some messages to inform the user about its progress
and errors encountered, if any. Since these messages are barely formatted and include
expanded tags and long mapping strings read from CG_MAP.xml, to avoid obscuring the
terminal view, it is recommended to redirect the standard output of DL_CGMAP into a log-file.

To resume, provided the current working directory contains the output of DL_POLY for the
full-atom system, the CG tool can be invoked as follows (see README.txt for compilation):

user@host<dl_poly_sim_dir>$ DL_CGMAP.x > DL_CGMAP.log &

Then, if anything goes not as expected, one can check the log file (DL_CGMAP.log) for
clues. Most often the errors will arise due to misspellings in CG_MAP.xml – checking and
correcting tags, names of molecules, atoms and maps should normally resolve the issues
(see below for the format details).

Expected format of CG_MAP.xml

The CG mapping input file for DL_CGMAP assumes XML format, i.e. using xml-tags (e.g.
<tag></tag>), where any meaningful value must happen only in between the opening
(<tag>) and closing (</tag>) tags. An example of the correct CG_map.xml file in the case
of mapping a three-site water molecule (TIP3P) onto one CG bead is given below.

<cg_molecule> <!-- start with this tag section, can have a few -->
 <!-- section describing a CG molecule type -->
 <name>Water</name> <!-- have this tag *once* in section -->
 <!-- name of the CG molecule after mapping -->
 <ident>water tip3p</ident> <!-- have this tag *once* in section -->
 <!-- name of the original molecule in FIELD -->
 <topology> <!-- have this tag subsection *once* -->
 <cg_beads> <!-- have this tag subsection *once* -->
 <cg_bead> <!-- at least one instance = 1 CG bead -->
 <name>H2O-com</name> <!-- *once* in subsection -->
 <!-- type of the CG bead in created FIELD_CG -->
 <type>H2O</type> <!-- *once* in subsection -->
 <!-- name of the CG bead in created FIELD_CG -->
 <mapping>W</mapping> <!-- *once* in subsection -->
 <!-- name of the CG map to be used for the bead -->
 <beads> <!-- specification of atoms in the CG bead, *once*-->
 1:w_tip3p:OW 1:w_tip3p:HW 1:w_tip3p:HW
 <!-- 1:*:OW 1:*:HW* -->
 </beads>
 </cg_bead>
 </cg_beads>
 </topology>
 <maps> <!-- maps container subsection; only *once* -->
 <map> <!-- map specs; at least one, can have a few -->
 <!-- at least one bead must refer to the map name-->
 <name>W</name>
 <weights> <!-- atom weights in the CG bead, one per entry -->
 16. 1.008 1.008
 <!-- 16. 1.008 -->
 </weights>
 </map>
 </maps>
</cg_molecule>

Here the tags, their values and user remarks (embraced in <!-- -->) are highlighted in blue,
black and grey, respectively. The comments briefly describe the tag rules and meaning.
Molecule, atom and map names can be any character string complying with the DL_POLY
format (sic. bead names and types must be of no more than 8 characters). Blank spaces,
digits and most of the special characters are allowed, except for the backslash ('/'; not to
mess up the tags), column symbol (':' used as a delimiter in the <beads> specification),
tilde and hash symbols ('~'and '#' used as delimiters by DL_CGMAP internally).

Clearly, the CG mapping is done molecule-wise, i.e. one cannot unite two or more
molecules into one CG entity, nor include atoms from different molecules into the
same CG bead. Scenario are, though, possible where the same atom can be included
into different CG beads within the same molecule. Note also that molecule type given
as value in <ident> tag must be found in the original FIELD file, otherwise DL_CGMAP
will terminate with an error.

Bead names and types within <cg_bead> tag

Since each CG bead is mapped onto a specific set of atoms, which implies unique
atomic indices, the bead names set by <cg_bead><name> tag must be unique within
the molecule specification. Otherwise DL_CGMAP tool will halt with an error: “repetitive CG
bead name”. However, DL_POLY treats atom names essentially as atom types, and therefore
it is the bead types specified by <cg_bead><type> tag that are stored in the output files in
place of the “atom names”, whereas the bead names from CG_map.xml take place of the
“atom types” in the FIELD_CG file.

This way it becomes possible not only to have the same “atom name” for physically identical
beads (in CONFIG_CG, REVCON_CG and HISTORY_CG files), but also to opt for unique
“atom names”, if necessary, by specifying unique bead types in CG_map.xml. This feature,
although being a deviation from the original VOTCA specification, adds some flexibility when
using DL_CGMAP tool – consider calculating RDFs for either all pairs of physically identical
beads or only certain bead pairs (say, due to their “importance”).

Atom lists in <beads> tag

According to the VOTCA xml specification, each atom included in a CG bead is identified by a
triple ID as follows: residue_index:residue_name:atom_name, all the three IDs being
found in the original topology file (this is the case for Gromacs MD simulation package). In
the case of DL_POLY residue name is not used in FIELD files at all, while residue index is
equivalent with the index of a charge/neutral group within a molecule. Therefore, for the lack
of a better option, DL_CGMAP ignores the value of residue_name and only uses
residue_index and atom_name from the VOTCA's triplet for atom identification. Note,
though, that while residue name is ignored, it has to be present in some way, e.g. the wild-
card character '*' or molecule name (or type) can be used for it.

The residue_index should match the index of the charge/neutral group that the picked
up atom belongs to. However, if the residue/group index cannot be taken into account, e.g.
when the entire molecule is the only group, or group numbers are absent in FIELD, the wild-
card '*' can be used to indicate that residue index must be ignored.

Various ways to identify atoms within the <beads> tag.

1) Most straightforward is to to copy the group index and name of each atom in the
same order as they appear in the FIELD file, see the example above. In this case the atom
order within the molecule is presumed to be the same as in the <beads> tag.

2) It is also possible to specify the index of atom after its name, with a hash '#' symbol
preceding the index (res_index:res_name:atom_name#atom_index), e.g. <beads>
1:*:OW#1 1:*:HW#2 1:*:HW#3 </beads>. Alternatively, one can skip atom names
altogether and opt for “:#atom_index“ representation only. When atom indices are present,
atoms can enter the <beads> tag in arbitrary order.

NOTE: if residue_index is also provided, #atom_index represents the atom position
within the group, defined by the order of appearance of atoms within the group in the FIELD
file. In contrast, in the case of undefined residue_index ('*'), #atom_index should be set
equal to the atom positional index within the molecule, defined by the order of appearance of
atoms in the FIELD file.

3) The most compact way of specifying atom lists is by using the wild-card '*' instead
of atom indices (but not for parts of indices or names!). For instance, in order to include all
atoms with the same name belonging to the same group, one can use “:atom_name#*“ or

even simpler form “:atom_name*“, see the commented-out list of the <beads> tag in the
example for water above. Evidently, by skipping the atom names and using “:#*“ in the place
of atom_name, one can define one CG bead for the entire group (residue), or even molecule
(sic. “*:*:*”)!

NOTE: the allowance of using wild-cards and hash-preceded atom indices is also an
extension to the VOTCA specification, which does not, though, restrict the use of the VOTCA
tools after the CG mapping has been done for DL_POLY input files with DL_CGMAP.

Mapping specification in <map><name> and <map><weights> tags

The weights allow to weigh each atom contribution to a CG bead as necessary. In the
simplest case of centring the bead on the center of mass (COM) of the group of included
atoms, weights must be set equal to the atom masses. Common sense suggests that each
map name (defined by <map><name>) should be present within the <cg_beads>
subsection at least once (named by <cg_bead><mapping>). Note that DL_CGMAP will halt
if it's not the case! Obviously, the sequence and number of entries in <map><weights>
must match those specified in <cg_bead><beads> for the same <cg_bead><mapping>
name, i.e. weights are assigned atom-by-atom or entry-by-entry (if '*' characters are
used). To set all weights equal to masses for all atoms in a bead, put '*' in <weights>.

Being the counterpart of atom masses, weights are accounted for in the same fashion, i.e. all
atom coordinates and velocity components (if present in HISTORY file) are re-weighted by
normalised weights, so that the sum of all atom weights within a CG bead equals 1. Note that
this way the total momentum of the atomic group included in a CG bead is preserved,
whereas the corresponding kinetic energy is not. Forces are treated as conservative, i.e.
dependent on atom-atom separations only, and hence, the total force on the CG bead center
is set to the sum of all the atomic forces (if present in HISTORY file).

Using DL_CGMAP tool for RDF calculation
The utility allows also to calculate radial distribution functions, g(rij), for pairs of CG sites,
based on a set of full-atom configurations (frames) stored in the trajectory file HISTORY. As
will be detailed shortly, in a single run of DL_CGMAP one can obtain either a single RDF for a
particular pair of beads identified in file CG_map.xml by their “bead names”, or several RDFs
for a set of bead pairs, as is prescribed by the user in an additional input file named
inp.cgmap-rdf. NOTE: if the latter file is not found in the working directory, the tool can
still be used for CG mapping, without RDF calculations.

Format of the RDF input file for DL_CGMAP

Before using DL_CGMAP for RDF calculus one needs to create the input file for it, called
inp.cgmap-rdf, containing RDF-specific input. This input file should have the following
“fixed” format and contain all the parameters shown in the example below. Note that for
running DL_CGMAP without reading errors it is essential to adhere to the specified line
sequence in the input file and keeping the number and the meaning of the parameters on
each line exactly as exemplified.

Each parameter-containing line, or “record”, is preceded by a descriptive remark line with a
short reference for the parameters read in next. To make the input file easier readable, the
format assumes exactly one(!) empty line to separate a previously read record and the next
remark line. All remark lines and single empty lines are simply skipped by DL_CGMAP. Thus,
the format is based on line triplets containing subsequently: descriptor, record and
separator lines. Provided the parameter values in a record are put in the correct order,

the figures do not assume any particular formatting, i.e. they are read in a “free style”
format: read(istd,*)val1,val2 etc..

Trajectory file name (HISTORY or HISTORY_CG)

 "HISTORY_CG"

bead1, bead2 , RDF_type: intra[molecular] / inter / any[=system]

 H2O ALL intermolecular

r_cut (<= Lmin/2), delr (Angstrom)

 10. 0.05

Nbeads/Natoms, Conf0, ConfN, Nskip

-1 1 1000 10

The first record should contain a string specifying the name of the trajectory file, either
HISTORY or HISTORY_CG. NOTE: specifying HISTORY here implies skipping the creation
of HISTORY_CG file! The second record provides two bead names (must be present in
CG_map.xml) as character*(8) words. Single or double quotes can be used to embrace
strings containing blank spaces, otherwise the quotes are unnecessary.

The third record defines the cutoff distance (Å), r_cut, and the bin size, delr, to be used for
the r-grid, from which the number of bins is calculated. Most often delr = 0.05 Å would
be suitable, as producing sufficiently detailed RDFs, and still keeping the statistical noise
level under control.

NOTE: the cutoff value does not need to be related in any way to the actual cutoff(s) used in
the DL_POLY simulation (cf. CONTROL file). But, of course, the cutoff for RDF cannot be
greater than half the minimum cell dimension in any frame found in the HISTORY file, i.e. one
has to be careful with the cutoff choice in the case of NpT trajectories!

The last (forth) record sets the (integer) numbers for: Nbeads – the number of beads per
frame; Conf0 and ConfN – the first and the last frames to account for, and Nskip – the
skipping step between the frames included in the RDF calculation. Any of the numbers can
be set to -1, in which case DL_CGMAP will assume one of the following: for Nbeads – reading
it from the first frame in the HISTORY file; for Conf0 and ConfN – starting with the first frame
and/or finishing with the last frame found in HISTORY; and Nskip=-1 will be translated as
Nskip=1.

Alternative ways of RDF(s) calculation

If two actual bead names (present in CG_map.xml) are given, then a single RDF will be
calculated and stored in file called RDFDAT_bead1_bead2 (two-column ACSII file), where
“bead1” and “bead2” stand for the bead names used in the input. It is, however, possible to
replace one or both bead names in the input with a directive word: “ANY” or “ALL”. Thereby
DL_CGMAP will be directed to calculate RDF(s) not for a particular bead pair but as follows.

1) Self-evidently, “ANY” invokes the substitution of the actual bead name by “any bead name”,
implying that all possible pairs (consistent with the reference to the other bead) will be
included into a single RDF file: RDFDAT_bead1_any (or RDFDAT_any_any).

2) In contrast, directive “ALL” tells DL_CGMAP to run through “all bead names” one-by-one
and, hence, calculate the (multiple) separate RDFs stored as RDFDAT_bead1_bead2.

